Abstract — Concrete is the vital material used in construction. Concrete is currently used in construction to meet the demand for strength and durability. However, with the increasing environmental concerns, the demand for a more sustainable and environmentally friendly construction material is increasing. Therefore, the development of high-performance concrete using zeolite and coconut fibre is an area of interest. The replacement of some of the cement with zeolite and coconut fibre in the concrete mixture has been examined in this study. The mechanical properties of the concrete mixtures containing zeolite and coconut fibres in a binary blended system were investigated by replacing cement by zeolite up to 20%. Here optimum amount of coconut fibre and zeolite percentages of zeolite are added by weight of cement to the concrete mixture. The structural strength of such a binary mix was investigated by studying their Mechanical properties. The mechanical properties are examined by Compressive strength, Split Tensile strength and Flexure strength test. The replacement has shown improved strength compared with that of a conventional concrete.

Keywords — Coconut fiber, Concrete, Mechanical properties, Supplementary Cementitious Material (SCM), Zeolite.

I. INTRODUCTION

Concrete is an extraordinary and key structural material in the construction history. It is no doubt that with the development of human civilization, concrete will continue to be a dominant construction material in the future. However, the development of modern concrete industry also introduces many environmental problems such as pollution, emission of dangerous gases, depletion of natural resources and other such problems. Presently, Portland cement and supplementary cementitious materials are cheapest binders which enhance the performance of concrete. However, out of these binders, production of Portland cement is very energy exhaustive along with CO2 production. Cement production accounts for about 5% of total global CO2 emissions (Tatem, 2003). Hence many industrial pozzolanic by-products like fly ash, slag, SF and zeolite have been partially incorporated in concrete and addition of Natural fibres like coconut fibre, sisal fibre and many other fibres added to the concrete bear many technical advantages by the fact that concrete with these materials provides the best economic and technological solution to less emission of CO2 thereby making a way to cause the least harm to the environment.

II. MATERIALS USED

A. Cement

The basic raw material is clinker, which is made from the limestone. In this Project Work, the Dalmia Cement 43 Grade is used as per IS: 8112-1989

![Fig. 1 Ordinary Portland Cement](http://www.ijettjournal.org)

B. Zeolites

Zeolites are micro porous, aluminosilicate minerals which are used as adsorbents and catalysts. The term zeolite was originally coined in 1756 by Swedish mineralogist Axel Fredrik Cronstedt, a large amounts of steam from water has been produced which has been absorbed by the material. Based on this, he called the material zeolite, from the Greek word (ζηλος), meaning "to boil" and (λίθος), meaning "stone". Zeolites consist of an open silica framework, for which alumina can substitute in variable proportions, with alkaline and alkaline earth metals. Together with variable amounts of water, the cations are more or less loosely bound to oxygen’s framework in the open channels and they show...
considerable pozzolanic activity despite their distinct crystalline structure.

C. Aggregates
Concrete is made of aggregates which are bound with cement paste, which is a product of cement hydration, a reaction between cement and water. The aggregate for concrete consists of coarse aggregate and fine aggregate. In this project work, Grade I **Fine aggregate** of particle size less than 2 mm and greater than 1 mm is chosen. **Coarse aggregate** greater than 10 mm but lesser than 20 mm is chosen.

D. Coconut fibre
Coconut fibres obtained from coconut husk, is the agricultural waste products obtained in the processing of coconut oil, and these are available in the tropical regions in large quantities. Coconut fibre has been used to enhance concrete and mortar, and has proven to improve the toughness of the concrete. Coconut fibers have the highest toughness amongst natural fibres.

E. Water
Tap water available in the laboratory was used in preparing the concrete. The qualities of water samples are uniform and potable. pH value lies between 6 to 8 and the water is free from organic matter and the solid content is within permissible limit as per IS 456-2000 and conforming to IS 3025-1964.
IV. CASTING AND CURING OF CONCRETE

The concrete specimens are casted and cured for 28 days and 56 days. The concrete specimens have dimensions of 150 x 150 x 150 mm cubes for compressive strength test, beams of 500x100x100 mm for flexural strength test and cylinder of dia. 150 mm x 300 mm for split tensile strength. To compare the result of conventional high performance concrete, a series of control concrete mixes was also investigated incorporating various percentages of SCM (zeolite).

V. TESTS ON HARDENED CONCRETE

A. Compressive Strength Test

The Compression Test was conducted as per IS 516–1959. Place the specimen centrally on the location mark of the compression testing machine and load is applied continuously, uniformly and without shock.

- \[f_{cu} = \text{load at failure} / \text{Plan area} = \frac{P}{A} \text{ (N/mm}^2) \]

Where, \(P = \text{Load at failure (N)} \)
\(A = \text{Area of the specimen (mm}^2) \)

B. Compressive Strength Results and Discussion

<table>
<thead>
<tr>
<th>Mix</th>
<th>Cement</th>
<th>Z</th>
<th>C</th>
<th>FA</th>
<th>CA</th>
<th>W/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>M1</td>
<td>0.95</td>
<td>0.05</td>
<td>0.03</td>
<td>1.5</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>M2</td>
<td>0.90</td>
<td>0.10</td>
<td>0.03</td>
<td>1.5</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>M3</td>
<td>0.85</td>
<td>0.15</td>
<td>0.03</td>
<td>1.5</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>M4</td>
<td>0.8</td>
<td>0.20</td>
<td>0.03</td>
<td>1.5</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>M5</td>
<td>0.75</td>
<td>0.25</td>
<td>0.03</td>
<td>1.5</td>
<td>3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

In 28th day curing the Compressive Strength value for the control mix M0 was 31.5 N/mm², for M1(5%Z+3%C) was 35 N/mm² and beyond this percentage of replacement of cement, the strength was gradually increasing and reduced to 35.6 N/mm² for (M5) 25% Z+3%C replacement. Strength increment is 29% more than the nominal mix when zeolite is added upto 15% and above this percentage the strength decreases.

Similarly on 56th day of curing the compressive strength value for the control mix(M0) was 34 N/mm², for 5%Z+3%C(M1) was 38.5 N/mm² and beyond this percentage of replacement of cement, the strength was gradually increasing and reduced to 39 N/mm² for (M5) 25% Z+3%C replacement. Strength increment is 29% more than the nominal mix when zeolite is added upto 15% and above this percentage the strength decreases.

C. Split Tensile Strength Test

The split tensile test as per IS 5816:1999 was conducted. A cylinder of 300 mm length and 150 mm diameter is used for the test. The test is carried out by placing a cylindrical specimen horizontally between the loading plates of a compression testing machine and the load is applied until failure of the cylinder takes place along the vertical diameter. The maximum load applied to the specimen was then recorded and the appearance of the concrete for any unusual type of failure was noted.

To find split tensile strength following equation has used.

- \[\text{Split tensile strength} = \frac{2P}{\pi DL} \]

Where, \(P = \text{maximum applied load [N]} \)
L = length, in [mm]
D = diameter, in [mm]

D. Split Tensile Strength Results and Discussion

TABLE VI

<table>
<thead>
<tr>
<th>Mix</th>
<th>% of Z</th>
<th>% of C</th>
<th>Split Tensile Strength N/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>0%</td>
<td>4.2</td>
</tr>
<tr>
<td>M1</td>
<td>5%</td>
<td>3%</td>
<td>4.4</td>
</tr>
<tr>
<td>M2</td>
<td>10%</td>
<td>3%</td>
<td>4.6</td>
</tr>
<tr>
<td>M3</td>
<td>15%</td>
<td>3%</td>
<td>5.1</td>
</tr>
<tr>
<td>M4</td>
<td>20%</td>
<td>3%</td>
<td>4.9</td>
</tr>
<tr>
<td>M5</td>
<td>25%</td>
<td>3%</td>
<td>4.8</td>
</tr>
</tbody>
</table>

E. Flexural Strength Test

Flexural strength is often measured on flexural testing machine. Three points loading is applied on the centre of the beam. The load is applied without sock and increasing continuously. The load is increased until the specimen fails, and the maximum load is applied to the specimen during the test is recorded.

- The flexural strength

\[F_b = \frac{P \cdot L}{b \cdot d^2} \]

Where,
- \(P \) = maximum applied load [N]
- \(L \) = length of specimen, in [mm]
- \(d \) = depth of specimen, in [mm]
- \(b \) = breadth of specimen, in [mm]

F. Flexural Strength Test Results and Discussion

TABLE VII

<table>
<thead>
<tr>
<th>Mix</th>
<th>% of Z</th>
<th>% of C</th>
<th>Flexural Strength N/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>0%</td>
<td>4.7</td>
</tr>
<tr>
<td>M1</td>
<td>5%</td>
<td>3%</td>
<td>5.4</td>
</tr>
<tr>
<td>M2</td>
<td>10%</td>
<td>3%</td>
<td>5.8</td>
</tr>
<tr>
<td>M3</td>
<td>15%</td>
<td>3%</td>
<td>6.4</td>
</tr>
<tr>
<td>M4</td>
<td>20%</td>
<td>3%</td>
<td>6.6</td>
</tr>
<tr>
<td>M5</td>
<td>25%</td>
<td>3%</td>
<td>6.8</td>
</tr>
</tbody>
</table>

- In 28th day curing the flexural strength value for the control mortar was 4.2 N/mm², for 5%Z+3%C (M1) was 4.4 N/mm² and beyond this percentage of replacement of cement, the strength was gradually increasing and reducing to 4.8 N/mm² for 25%Z+3%C (M5) replacement. Strength increment is 21.4% more than the nominal mix when zeolite is added up to 15% and above this percentage the strength decreases.

- Similarly on 56th day of curing the flexural strength value for the control mortar was 4.9 N/mm², for 5%Z+3%C (M1) was 4.84 N/mm² and beyond this percentage of replacement of cement, the strength was gradually increasing and reducing to 5 N/mm² for 25%Z+3%C (M5) replacement. Strength increment is 27.3% more than
Strength increment is 23.4% more than the nominal mix when zeolite is added up to 15% and above this percentage the strength decreases.

- Similarly on the 56th day of curing the flexural strength value for the control mortar was 4.95 N/mm², for (M1) 5%Z+3%C was 5.2 N/mm² and beyond this percentage of replacement of cement, the strength was gradually increasing and reducing to 5.45 N/mm² for (M5) 25% Z+3%C replacement. Strength increment is 29.2% more than the nominal mix when zeolite is added up to 15% and above this percentage the strength decreases.

VI. CONCLUSIONS
The findings of the experimental investigations on the strength characteristics of concrete enhanced with various percentages of Zeolite and optimum amount of coconut fibres are reported. The following conclusion has been derived.

The mechanical properties like Compressive strength, Split Tensile strength and Flexural strength of hardened concrete are 29% to 30% more than the nominal mix when cement is partially replaced with zeolite up to 15% by weight of cement. More than this percentage the strength decreases. Hence the optimum amount of zeolite was found to be 15% and this leads to the less pollutant concrete without compromising the strength.

ACKNOWLEDGMENTS
First of all, I am thankful to the Almighty for all his blessings he has showered on me to complete this Project.

I wish to express my sincere gratitude to the Head of the Department and my project guide Dr.G.Dhanalakshmi,M.E.,MISTE.,PGDCA.,Ph.D., MICI Department of Civil Engineering for her valuable guidance and for extending all support throughout this Project.

Lastly I would like to express my heart-felt thanks to my family and my friends for their moral support and encouragement.

REFERENCES