
International Journal of Engineering Trends and Technology (IJETT) – Volume-45 Number8 -March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 388

Data Structure Alignment

 Nikeeta R. Patel

Assistant Professor at Department of Computer Science and Applications, Anand Institute of Information

Science, India

Abstract - The objective of this paper is to

comprehensively study the Data Structure

Alignment in order to maximize storage potential

and to provide for fast and efficient memory access.

Aligning data elements allows the processor to

fetch data from memory in an efficient manner and

thereby improves performance. Alignment refers to

the arrangement of data in memory and deals with

the issue of accessing data in chunks of fixed size

from the main memory.

Keywords - Data Structure Alignment, Data

Alignment, Alignment in C, Data Structure

Padding.

I.INTRODUCTION

Aligning the data allows the processor to fetch data

from memory in an efficient way and thus,

increasing the performance. Data alignment is a

major issue for all the programmers. It avoids the

wastage of memory. In this paper we will see how

the data is aligned and what the impact of aligning

data on memory is.

II. DATA STRUCTURE ALIGNMENT

Alignment relates to the location of data in

memory; means the address at which the data

should be stored. Data Structure Alignment can be

broken down into two issues: data alignment and

data structure padding.

III. DATA ALIGNMENT

Most of the computers require data to be aligned.

Data Alignment refers to putting the data at the

memory location which is multiple of its word size.

Aligning the data increases the performance of the

system remarkably and thus making it inevitable

for the programmers to resolve this issue.

Both Programmer and Processor view the memory

in two different aspects.

A. Programmer view of memory:

Programmers view memory as a simple array of

bytes. Or simply said, a large block of memory

consisting of number of bytes arranged

contiguously.

Fig.1

B. Processors View of Memory:

On contrary, processor views the memory as a

block of bytes whose size depends on the word size

of the processor. Processor always read from /

writes in the memory in the form of 2-, 4-, 8-, 16-,

or even 32-byte blocks.

Fig.1

Processors take this approach because accessing

the address on 1-byte is bit painful as compared to

accessing the addresses in blocks of 2, 4, 8, 16, or

32-bytes in one stroke.

IV. ALIGNMENT IN C

The way our C compiler lays out basic C data types

in memory is constrained in order to make memory

access faster. Memory is arranged sequentially and

is byte addressable. Memory is a collection of

words of 4 byte long. Storage of the data is

International Journal of Engineering Trends and Technology (IJETT) – Volume-45 Number8 -March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 389

dependent on the word size of the compilers /

processors.

Storage of the basic C data type does not start at the

arbitrary byte addresses. Instead each data type has

a certain alignment requirement except the char

data type which can start on any byte address. But

2-byte short data type must start at an even address,

4-byte integer or float data type must start at an

address which is divisible by 4 and 8-bytes long or

double data type must start at an address divisible

by 8.

For example, if an integer variable is allocated an

address X which is multiple of 4, then the

processor will need only one memory cycle to read

the entire integer. But if it is allocated at address

which is not a multiple of 4, then the integer spans

across two words in memory and thus requires two

memory cycle to fetch the entire integer. This

incurs in significant performance loss in terms of

speed.

Some basic data types are self-aligned in the sense

they are stored at the addresses which is multiple of

the word size of the processor. Self-Alignment

makes the access faster as it makes the processing

on the data types much faster as compared to

unaligned data types.

V. DATA STRUCTURE PADDING

Structure padding is the process of aligning the

data members of structure, in accordance with the

memory alignment rules specified by the processor.

In order to align the data in memory one or more

bits are inserted between the memory addresses.

Let’s consider a simple structure in a processor

having word size of 4.

Struct data_pad

{

char a;

char b;

int c;

char d;

short e;

};

Without taking the concept of data alignment into

consider one might draw the conclusion that the

above structure will occupy a total of 9 bytes of

memory in a sequential manner.

But this is not the case. In actual this structure will

occupy a memory size of 12 bytes, in which 5 bytes

are padded in order to align the data. Thus the

above layout can be visualized as

Struct data_pad

{

char a; (1-byte)

char b; (1-byte)

char pad1[2]; (2-bytes)

int c; (4-bytes)

char d; (1-byte)

char pad2; (1-byte)

short e; (2-bytes)

};

Variables a and b are char type, thus can be stored

at any data address. Variable c is of integer data

type and should be stored at the address which is

divisible by 4, thus requiring a padding of 2-bytes.

d variable again is of char type and can be stored

immediately followed by variable c. But variable e

is short and can be stored at the address divisible

by 2, thus requiring a padding of 1.

This incurs in memory being wastage and in

application with huge amount of data this is

significant. We minimize this memory wastage by

ordering the structure elements such that the largest

element comes first, followed by the second

largest, and so on.

Struct data_pad

{

int c;
short e;

char a;

char b;

char d;

};

Thus, aligning data properly helps us in increasing

the performance significantly. Also this helps us in

speeding up the memory access.

CONCLUSION

Software industry is growing rapidly in recent

years and a huge amount of data is collected each

day. In order to store this data, we require a huge

amount of memory, but we have limited amount of

memory. So there is a need to utilize the memory

efficiently. By aligning the data we speed up the

memory access and thereby increasing the

performance.

International Journal of Engineering Trends and Technology (IJETT) – Volume-45 Number8 -March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 390

REFERENCES

1. Knuth, D.E. The Art of Computer Programming, Vol. 1:

Fundamental Algorithms. Addison-Wesley, Reading,

Mass., 1968

2. D. L. Rohrbacher, Advanced computer organization

study: Volume I—Basic report; Volume II—Appendices,

Apr. 1966.

3. Small Data Structure by Charles Weir, James Noble

4. Horowitz, E., Sahni, S., Rajasekaran, S.: Computer

Algorithms/C++. Computer Science Press, New York

(1998).

5. Goodrich, M.T., Tamassia, R.: Algorithm Design:

Foundations, Analysis,and Internet Examples. John

Wiley & Sons, Inc., Hoboken (2002).

6.

