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Abstract—Sparse Coding has been an active 

research topic in machine learning and signal 

processing for the last ten years, as it has achieved 

impressive results when applied to many problems 

such as face recognition and image denoising. In 

this paper, we present a new contribution in 

applying sparse coding to the problem of Arabic 

phoneme classification. The classification system 

which is entitled: Sparse Coding based phoneme 

Classification system (SCPCS), employs the sparse 

code as a new speech feature for classification using 

Sparse Representation Classifier. The Sparse code is 

simply the “coefficients” of the “sparse” (with many 

zeros) linear combination of basic signals that can 

represent the targeted signal as close as possible. 

We study the impact of the sparse coding solver 

which aims to produce the sparse code, on its 

discrimination capability. Experiments to evaluate 

the proposed system performance were conducted on 

two manually segmented Arabic phonemes, 

extracted from KAPD (King Abdulaziz city for 

science and technology Arabic Phonetic Database) 

and CSLU2002 (Centre for Spoken Language 

Understanding) Arabic speech databases. 

Experimental results showed that the proposed 

system has achieved an accuracy of 85.3% on KAPD 

and 53.4% on CSLU2002, which are better than 

state of the art results in these two datasets. 

Keywords —Compressive Sensing, Sparse Coding, 

phoneme classification, dictionary learning, Sparse 

Representation Classifier SRC, l1 minimization 

algorithms, cross-validation.. 

I. INTRODUCTION 

For the last 10 years signal model based on sparse 

representation has been a very active research 

subject. The interest in sparse representation is 

motivated by the great success it achieved when 

applied to many signal processing tasks like image 

denoising [1], image restoration [2] and super-

resolution [3], compressive sensing [4], and blind 

source separation [5,6].  Sparse coding has been 

applied also to machine learning tasks, for example 

it has been used for robust face recognition[7], 

phoneme classification [8,9,10], and automatic 

speech recognition [11]. In this paper, we propose to 

use sparse model for phoneme classification using a 

learned dictionary. However, in [8,9] the 

classification is done using a dictionary composed of 

signal exemplars, whereas we investigate the 

usefulness of two famous dictionary learning 

algorithms: K-Singular Value Decomposition (K-

SVD) [32] and Fischer Discrimination Dictionary 

Learning (FDDL) [36] in this context. 

The sparse model can be formally defined as 

follows; let 𝑦 ∈ ℝ𝑀 be the signal that we’re looking 

to encode sparsely. We suppose that there is a matrix 

(Dictionary) 𝐷 ∈ ℝ𝑀×𝑁  where 𝑀 ≤ 𝑁 such that y 

can be written as a linear combination of at most k 

columns of D, where 𝑘 ≪ 𝑁 is called the sparsity 

degree. The ―sparse coding‖ problem is to find the 

vector 𝑥 ∈ ℝ𝑁 that contains only 𝑘 non-zero 

elements such that: 

 

                                    𝑦 = 𝐷. 𝑥                         (1) 

 

The vector x which contains the sparse 

coefficients of the linear combination of the 

elements (called atoms) of the dictionary D, that 

represents the signal y iscalled the sparse code. As D 

is over-complete (number of rows is less than the 

number of columns), this is an ill- posed inverse 

problem. The theory of Compressive Sensing proves 

[12] that if D has low coherence(coherence is the 

maximum correlation between any two dictionary 

atoms), then solving the following problem gives a 

unique sparse solution: 

 

 𝑃0 𝑚𝑖𝑛
𝑥∈ℝ𝑁

 𝑥 ℓ0
     𝑠. 𝑡.     𝑦 = 𝐷𝑥                 (2) 

 

Where  𝑥 0 is the l0 pseudo-norm which represents 

the number of nonzero elements in x. considering 

that the signal y might be corrupted with noise, the 

previous problem has been reformulated as: 

 

 𝑃0,𝜖 𝑚𝑖𝑛
𝑥∈ℝ𝑁

 𝑥 0      𝑠. 𝑡.      𝑦 − 𝐷𝑥 2 ≤ 𝜖        (3) 

 

The previous formulation is called the sparse 

approximation problem. Using the l0 pseudo norm 

makes the problem defined by (3) a non-convex 

optimization problem that has been proved to be an 

NP-hard [45] (not all nonconvex optimization 

problems are NP-hard). Relaxing the constraint by 

using the l1 norm instead of the l0 norm ―convexifys‖ 

the problem and makes it more tractable to solve. 

This gives the so-called Basis Pursuit Denoising 

Problem BPDN [13]: 
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 BPDN min
𝑥  ∈ ℝ𝑁

 𝑥 1 𝑠. 𝑡.   𝑦 − 𝐷. 𝑥 2 ≤ 𝜖    (4) 

 

Where  𝑥 1 =   𝑥𝑖 
𝑁
1 , and ϵ is some noise level 

energy. The previous constrained problem can be 

reformulated [14] into a problem without constraints 

using Lagrange Multipliers: 

 

 𝐿𝐴𝑆𝑆𝑂 𝑚𝑖𝑛
𝑥  ∈ ℝ𝑁

 𝑦 − 𝐷. 𝑥 2 + 𝜆.  𝑥 1          (5) 

 

Where 𝜆 > 0 is a regularization parameter, 

through which we control the sparsity degree 

(number of non –zero elements) of the sparse code x. 

In fact, Tibsherani[14] has proposed the pervious 

formulation which he called “Least Absolute 

Shrinkage and Selection Operator” (LASSO) to 

solve the problem of variable selection in classical 

linear regression. 

Algorithms to solve the sparse coding problem 

(sparse coding solvers) differ in two aspects: The 

formulation of the problem (mentioned above), and 

the algorithm used to solve the formulation. 

The Sparse Coding consists of two steps: first we 

should find a dictionary that can represent the 

signals of interest as a linear combination of a few 

number of its columns, second we should solve the 

sparse coding inverse problem to find the sparse 

code of the signal on the selected dictionary. There 

are two approaches to tackle the problem of 

dictionary selection, either we select an off the shelf 

dictionary like DCT, wavelets and Gabor 

transforms; such dictionaries enjoy both simplicity 

and fast computation but lack adaptativity to the 

specific type of signals of interests. In contrast, we 

can learn an adaptive dictionary from the training 

signal set. It has been shown that learned dictionary 

outperforms the non-adaptive ones in many 

application like image denoising[1], image 

compression [16], and image classification[15,3] 

.Finding the sparse code over the selected dictionary 

can be used later as a new feature for discrimination 

tasks [6-9]. 

In this paper we propose a sparse coding based 

phoneme classification system, using supervised 

discriminative dictionary algorithms to build a 

compact dictionary, instead of a dictionary 

composed of signal exemplars [7,8]. Experiments to 

evaluate the system performance were conducted on 

two manually segmented Arabic phoneme datasets. 

Results showed that dictionary learning algorithms 

do not provide a better classification accuracy over a 

dictionary composed of signal exemplars, but enable 

us to have a more ―compact‖ one which makes 

sparse coding faster. Different sparse coding solvers 

have been used and demonstrated different 

discriminative power of the sparse codes.  

The paper is organized as follows. In Section 2 

we provide a review of the two core problems: 

sparse coding algorithms and dictionary learning 

algorithms. In Section 3 the proposed phoneme 

classification system based on sparse coding is 

described. In Section 4 we present the conducted 

experiments and results. And in Section 5 we 

summarize and conclude the paper. 

II. LITERATURE REVIEW 

A. Sparse Coding Solvers 

Sparse coding algorithms (solvers) aim to find the 

sparse representation x of a given signal y on a given 

dictionary D according to one of the formulations 

(3),(4) or (5). These algorithms fall into two broad 

categories: greedy algorithms, and convex 

optimization algorithms. Greedy pursuits algorithms 

like Orthogonal Matching Pursuits (OMP) [17] and 

Compressive Sampling Matching Pursuit (CoSaMP) 

[18] solves (4) iteratively by choosing the best atoms 

from the dictionary that result in the lowest residual 

in the sparse approximation of the target signal, and 

add it to the ―active set‖- the set of dictionary atoms 

that most resemble the target signal-and re-evaluates 

the coefficients (sparse code) by solving least-

squares on the active set after each round.  

Algorithms that adopt the convex l1-norm 

regularized version of the sparse approximation 

problem (equation 4 and 5) form another category of 

sparse solvers. They use convex optimization 

techniques to solve the sparse coding problem. 

Those methods are called l1-minimization 

algorithms; because they need to minimize a 

function that contains an l1-norm term. l1 

minimization algorithms can be classified into: first 

order methods which use the gradient, second order 

methods which use the Newton method, and 

homotopy based methods.  

1. First Order Methods: In optimization, first-order 

methods refer to those algorithms that have at 

most linear local error, typically based on local 

linear approximation [20]. Proximity based 

methods [20] such as FISTA[21] are specifically 

designed for minimizing nonsmooth functions. 

They use proximal operator (which is generally 

the Euclidean Projection) to reformulate the 

constrained non-smooth problem into multiple 

smooth sub-problems.  

Gradient Projections for Sparse Reconstruction 

(GPRS) [22] uses a projected gradient descent 

approach to solve the Lasso problem (5) after 

splitting x into positive and negative parts to escape 

the problem with the l1 norm term not being smooth. 

Other methods such as Spectral Projected Gradient 

for l1 minimization (SPGL1)[23] uses the projected 

gradient descent algorithm with a step size specified 

by Barzilai–Borwein (BB) [23] formulas that select 

values lying in the spectrum (set of Eigen values) of 

𝐷𝑇𝐷, which found to provide a good approximation 

for the Hessian.  

Primal and Dual Augmented Lagrangian 

Method (PALM and DALM) [19] form 

another type of first order methods in which 
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the constrained problem of sparse coding is 

reformulated as an Augmented Lagrangian 

problem which is divided into three 

minimization sub-problems.   

The advantage of these first order methods is 

the low computational complexity per iteration 

compared to second order methods at the expense of 

increasing the number of iterations [19]. 

2. Second Order Methods: which use the Newton 

Method, such as Primal-Dual Interior Points 

Algorithm PDIPA [24, 25] and L1LS [27]. PDIPA 

starts with reformulating the unconstrained 

nonsmooth (because of the l1-norm term) 

optimization problem (5) into a constrained 

smooth one, and then it uses the Interior Points 

method to reformulate this later problem into a 

nonconstrained smooth optimization problem 

using the log-barrier. Finally, it employs the 

Newton method to solve this last one, and thus the 

worst case complexity of PDIPA is O(n
3
). L1Ls 

[27] is an Interior Points method that instead of 

using the Newton method which is 

computationally expensive, it uses a faster method 

called the truncated Newton which approximates 

the Newton system employing the Preconditioned 

Conjugate Gradient (PCG)[19].  

3. Homotopy based method: this is a different type 

of l1-miminzation methods which relies on 

tracing the solution path in function of the 

regularization parameter 𝜆  in (5). The name 

Homotopy reflects the fact the objective function 

in Lasso (5) experiences a homotopy (continuous 

deformation) from the l2 objective to l1 objective 

as 𝜆  decreases. Starting with large 𝜆0  and 

construction a decreasing sequence 𝜆𝑘  at which a 

change in the ―support set‖  (indexes of the 

nonzero elements) of optimal solution 𝑥𝑘
∗   takes 

place, which means either a new nonzero element 

is added or a previous zero element is removed 

[47]. The homotopy algorithms runs iteratively, 

at each iteration it calculates the update direction 

for only the nonzero element in 𝑥𝑘
∗   according to 

Newton method. Applying the update direction to 

𝑥𝑘
∗  may change the ―support set‖, and thus the 

update step of 𝑥𝑘
∗ is taken as the minimum of 

magnitude changes in the support set, and the 

parameter 𝜆𝑘  is lowered by the same magnitude. 

The algorithm stops when the difference between 

two consecutive solutions gets below a desired 

resolution. Though the Homotopy algorithm uses 

the Newtonian method, its computational 

complexity is far beyond the Interior Points 

method if x is sparse, because the Newtonian 

system involves only the nonzero elements 

whose number is small as x is sparse [19]. 

In our work we have used the greedy OMP. To 

compare its performance to other l1-minimization 

algorithms we have used three different first order 

solvers: GPRS, SPGL1, and DALM. We have also 

used L1LS which is a second order method and 

BPDN-Homopoty[27] which is Homotopy based 

method. 

B. Dictionary Learning  

In the classical dictionary learning problem, we 

seek a matrix D that can represent the training 

signals yisparsely as close as possible: 

 

𝑚𝑖𝑛
𝐷 ,𝑋

 ( 𝑦𝑖 − 𝐷𝑥𝑖 2
2

𝑛

𝑖=1

    𝑠. 𝑡.    ∀𝑖,  𝑥𝑖 0 ≤ 𝑘     (6) 

Where n is the number of training samples 

(different from N the dimension of x),𝑥𝑖  is the sparse 

code vector of the training sample𝑦i , k is the 

maximum number of non-zero elements in𝑥𝑖 , X is 

the matrix composed of all the sparse codes xi.  

This optimization problem is nonconvex when 

both D and X are unknown, however it becomes 

convex if one of D or X is fixed, that is why it’s 

generally solved iteratively by fixing the dictionary 

D and updating the sparse codes X, and then fixing X 

and updating D. 

In fact, dictionary learning is a generalization of 

the k-means clustering algorithm [29], the only 

difference is that in k-means each training signal is 

forced to use only one ―atom‖ from the dictionary 

(the closest cluster centre) as its representative, 

while in dictionary learning each signal is allowed to 

use multiple dictionary atoms provided that it can be 

approximated by a linear combination of these 

atoms, and that this linear combination uses as few 

as possible of the dictionary atoms.  

In k-means, we iterate between finding the 

representative of each training signal (the cluster 

center which is equivalent to dictionary atom- that 

minimizes the Euclidean or any other metric 

distance), and updating the cluster centers; 

dictionary learning is solved by iterating between 

two stages [29]. First, the dictionary is fixed and the 

sparse code𝑥𝑖  for each training signal is calculated 

using any sparse coding solver, then the sparse code 

is fixed and the dictionary atoms are updated to 

minimize the cost function.  

How to update the dictionary atoms is the key 

difference between dictionary learning algorithms. 

Some dictionary learning updates the whole set 

atoms in each iteration. This is the case of one of the 

early and simple dictionary learning MOD (Method 

of Optimal Direction) [28], which updates the whole 

dictionary using the closed form of the Mean 

Squared Error (MSE) estimator:   

 

                   𝐷 = 𝑌.𝑋𝑇 . (𝑋𝑋𝑇)−1               (7)      
 

Other dictionary learning algorithms update the 

dictionary atoms successively one by one, like the 

case of the very famous and successful dictionary 

learning algorithm K-SVD (K-Singular Value 

Decomposition) [29]. In the sparse coding stage, K-

SVD uses greedy Orthogonal Matching Pursuit 
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OMP to find the sparse code for each training 

sample. While in the dictionary update stage, for 

each dictionary atom𝑑𝑘 , K-SVD selects only the 

training samples that use this atom, which will be 

denoted asx
k
, and splits the representation error E 

into two components: the sparse representation 

on𝑑𝑘 , and the residual error 𝐸𝑘  that accounts for the 

sparse presentation error using all the dictionary 

atoms other than𝑑𝑘 .  

 

                 𝐸 =  𝑌 − 𝐷𝑋 𝐹    
2  

=  𝑌 − 𝑑𝑖

𝑁

𝑖=1

𝑥𝑇
𝑖  

𝐹

2

 

                        =   𝑌 − 𝑑𝑖
𝑖≠𝑘

𝑥𝑇
𝑖  − 𝑑𝑘𝑥𝑇

𝑘 

𝐹

2

 

                        =  𝐸𝑘 − 𝑑𝑘𝑥𝑇
𝑘 

𝐹

2
                      (8) 

 

Where 𝑥𝑇
𝑖  represents the sparse coefficients 

corresponding to the atom𝑑𝑘 , which isi
th

 row of the 

matrix X (whose columns are the sparse codes for 

test samples that represent the columns of Y). As the 

row  𝑥𝑇
𝑘  are all zeros except for the indexes of the 

test examples in Y that uses the atoms 𝑑𝑘  , then 𝑑𝑘𝑥𝑇
𝑘  

does not affect the whole 𝐸𝑘 , but only affects the 

restricted 𝐸𝑘
𝑅  which is composed of the columns of 

𝐸𝑘  that correspond to the examples that use 𝑑𝑘 .  

To update  𝑑𝑘  and 𝑥𝑇
𝑘   in a way that minimizes the 

restricted error𝐸𝑘
𝑅  (which is the only part of the total 

error representation E that is affected by the atom 

𝑑𝑘), K-SVD evaluates the Singular Value 

Decomposition (SVD) for𝐸𝑘
𝑅 = 𝑈𝑉𝑇 ,and updates 

𝑑𝑘with the first column of U, while updates the 

corresponding sparse coefficients 𝑥𝑇
𝑘  as the first 

column of V multiplied by  1,1  [29].  

The cost function in (6) only measures the 

representation power of the Dictionary D. In the case 

of classification task, we are also interested in the 

discriminative power of the sparse code x. This leads 

to a new trend in dictionary learning algorithms 

called ―discriminative‖ or ―supervised‖ dictionary 

learning in which the cost function reflects both the 

representation and classification error.Suo [30] has 

proposed the most general formulation of the 

discriminative dictionary learning problem as 

follows: 

min
𝐷,𝑋

 ( 𝑦𝑖 − 𝐷𝑥𝑖 2
2

𝑛

𝑖=1

+  𝜆1 𝑥𝑖 1 )  + 𝜆2𝑓𝑋 𝑋 

+ 𝜆3𝑓𝐷 𝐷                     (9) 

 

Where 𝑓𝑋 𝑋  is a function that measures the 

discriminative power of the sparse codes X, and  

𝑓𝐷 𝐷 is a function that measures the discrimination 

power of the atoms of D. 

Discriminative Dictionary learning algorithms fall 

into three categories. In the first category, a shared 

dictionary by all classes is learned, while forcing the 

sparse codes to be discriminative (λ3 = 0), for 

example Mairal et al. [31] proposed to add a logistic 

loss function on the sparse code as a discriminative 

measure. Zhang et al. proposed Discriminative K-

SVD (D-KSVD) [32] that adds a linear regression 

term to learn a linear classifier on the sparse 

coefficients to the objective function in the 

Dictionary learning problem formulation (6), as for 

the case of Label Consistent-KSVD (LC-KSVD) 

[33] a label consistency term is added that measures 

how much the sparse codes are consistent with the 

class labels.  

In the second category, only the discriminative 

power of the dictionary atoms is considered (λ2 =
0), for example Ramirez et al. proposed learning 

class-specific sub-dictionaries for each class with a 

structural incoherence penalty term to make the sub-

dictionaries as independent as possible [34].  

A hybrid discriminative dictionary learning forms 

the third category where both the dictionary atoms 

and the sparse codes are forced to be discriminative 

(λ2 ≠ 0, λ3 ≠ 0), like the case of COPAR [35] and 

FDDL[36]. 

Fischer Discriminative Dictionary Learning 

FDDL [36] uses labels information in both the 

dictionary update stage and the sparse coefficients 

finding stage. In FDDL, the sparse codes of the 

training samples are forced to have small within-

class scatter but big between-class scatter. Also, 

each class-specific sub-dictionary is forced to have 

good reconstruction capability for the training 

samples from that class but poor reconstruction 

capability for other classes. Therefore, both the 

representation residual and the sparse coding 

coefficients of the test sample are discriminative. 

Thus the optimization problem to learn the 

dictionary in FDDL is formulated as follows: 

 

min
𝐷 ,𝑋

𝑟 𝑌,𝐷,𝑋 +  𝜆1 𝑋 1 + 𝜆2𝑓𝑋 𝑋  

             𝑠. 𝑡.     𝑑𝑖 2 = 1   ,∀ 𝑖 ∈ {1. .𝐾}      (10) 

 

Where 𝑟 𝑌,𝐷,𝑋  is a cost function that measures 

the discriminative power of the dictionary D,  𝑋 1  

is the sparsity penalty term, and 𝑓𝑋 𝑋  is a cost 

function that measures the discriminative power of 

the sparse codes X, 𝐾 is the number of columns of 

𝐷. 

The cost function that imposes discrimination on 

the atoms of the dictionary D is defined as follows: 

 

𝑟 𝑌𝑖 ,𝐷,𝑋𝑖 =  𝑌𝑖 − 𝐷𝑋𝑖 𝐹 +  𝑌𝑖 − 𝐷𝑖𝑋𝑖
𝑖 
𝐹 

+   𝐷𝑗𝑋𝑖
𝑗
 
𝐹

2
𝑐

𝑗=1
𝑗≠𝑖

                     (11) 

Where  𝐴 𝐹 =    𝑎𝑖𝑗
2

𝑗𝑖  is the Frobenius norm. 

The first term in r represents the total representation 
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error of samples 𝑌𝑖  (of class i) over the total 

dictionary D, the second term represents the 

representation error of 𝑌𝑖over the i-class specific 

sub-dictionary 𝐷𝑖 , while the third term represents the 

contribution of other subdictionaries than 𝐷𝑖 in the 

sparse representation of samples 𝑌𝑖  (which should be 

small as those samples belong to different class).  

The function 𝑓𝑋 𝑋 is a cost function that imposes 

discrimination on the sparse codes X according to 

Fischer Discrimination criterion [36], which means 

that the sparse codes X should have minimum 

within-class scatter denoted as𝑆𝑊 𝑋 , and maximum 

between-class scatter denoted as 𝑆𝐵 𝑋 . A 

regularization termthat shrinks  𝑋 𝐹
2 is added to 

make 𝑓𝑋 𝑋  more smooth and convex [37]: 

 

𝑓𝑋 𝑋 = 𝑡𝑟 𝑆𝑊 𝑋  − 𝑡𝑟 𝑆𝐵 𝑋  + 𝜂 𝑋 𝐹
2    (12) 

 

Where 𝜂 is a regularization parameter that controls 

the energy of the samples, tr is the matrix trace 

operator.  

When the labels information are embedded 

explicitly into the DL problem as in the case of 

FDDL, Sparse Representation Classifier SRC [7] 

can be used: It calculates the class-specific residue 

of the sparse code for the targeted signal, and 

chooses the class that gives the minimum residue. 

However, if the labels information are implicitly 

embedded linear classifier such as SVM can be used. 

III. SPARSE CODING BASED PHONEME 

CLASSIFICATION SYSTEM (SCPCS) 

Sainath et al. were the first to propose employing 

Sparse coding for phoneme classification 

[9,10].They used the sparse coding of the phoneme 

test samples, on a dictionary composed of phoneme 

exemplars as discriminative features, and fed these 

sparse codes to the Sparse Representation Classifier 

[7] for classification. Sivaram et al. in [10] proposed 

employing sparse coding for phoneme recognition. 

They used the sparse code as a new speech feature to 

train Multi-Layer Perceptron MLP network to get 

the posterior probabilities that will be used as 

emission likelihood of the HMM states. Every 

phoneme is modelled as a 3 state HMM, and Viterbi 

decoder is used for phoneme recognition. Our work 

differs from the previous ones in two aspects; first 

we consider using dictionary learning algorithms to 

build a more compact phoneme dictionary, second 

we are using a ―clipping‖ stage before applying the 

sparse coding, to make all the segments of the same 

length. 

The proposed SCPCS system contains five stages: 

signal pre-processing, features extraction, feature 

clipping, dictionary creation, and phoneme 

recognition (figure1). At the pre-processing stage 

silence from speech segments are removed, and pre-

emphasis filter is applied to cancel lips effect. At the 

feature extraction stage phoneme speech segments 

are divided into frames of length 25ms with 10ms 

overlapping. If the speech segment is shorter than 25 

ms, zero padding is applied. After speech framing 

different well-known speech features are being 

extracted: Mel Frequency Cepstral Coefficients 

(MFCC), Relative Spectral Transform - Perceptual 

Linear Prediction (Rasta-PLP) [38], Sparse Auditory 

Reproducing Kernel (SPARK) [39], and Gammatone 

[40]. At the feature clipping stage, feature vectors 

for each phoneme segment are clipped and a window 

of only L frames centered at the middle of the 

phoneme speech is extracted. If the number of 

feature vectors for the phoneme sample is shorter 

than L frames, zero padding is applied. The window 

is reshaped to form one feature vector Vj.  

At the dictionary creation stage, the clipped 

feature vectors of the training phoneme samples are 

warped together to form one matrix: the initial 

exemplar dictionary, which is either directly used to 

find the sparse code for the test samples or fed to the 

dictionary learning subsystem. Two famous 

dictionary learning algorithm are considered: K-

SVD and FDDL.  

In the recognition phase, the sparse code of the 

clipped feature vector for the test sample is 

calculated using one of the sparse solvers. The 

sparse code is used by the Sparse Representation 

Classifier [7] to detect the class to which the 

corresponding speech segment belongs to. 

 

 
 

To solve the equation in step 1, different solvers 

are used in view of performance comparison: greedy 

OMP, l1-minimization algorithms: GPRS, SPGL1, 

DALM, Homotopy, L1LS. The Matlab

implementations for these methods are available 

at [26, 27]. To compare with the l2 norm regression, 

inone experiment we computed x according to the 

Mean Squared Error Estimator, instead of l1 lasso 

regularized problem in step 1. 

 

  

𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥

 𝑦 − 𝐷. 𝑥 2
2 + 𝜆.  𝑥 1 

𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑖

 𝑦 − 𝐷. 𝛿𝑖(𝑥) 2
2 + 𝜆.  𝑥 1 

Sparse Representation Classifier SRC 

1. Find the sparse code for the clipped 

feature vector y, by solving Lasso 

2. for each sub-dictionary Di of D, find the 

energy of the corresponding coefficients 

in the sparse code x. 

3. the class of y, is the index of sub- 

dictionary whose corresponding sub-

sparse code energy is the highest: 

 

Where𝛿𝑖(𝑥)is a selector operator that selects the 

elements of sparse code x corresponding to the 

sub-dictionary Di, and sets all others to zero. 
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Fig 1. Sparse Coding based Phoneme Classification System (SCPCS) detailed block diagram 

 

IV. EXPERIMENTS 

A. Phoneme Databases 

In 2000, King Abdulaziz City for Science and 

Technology (KACST) has published a detailed and 

comprehensive Arabic speech database called 

KACST Arabic Phonetics Database (KAPD) 

[41].This database consists of 340 semi-Arabic 

uttered words that were artificially created and 

recorded 7 times in different environments by seven 

male speakers (2380 words). Figure 2 shows an 

example of these semi-words, the semi-word
1
 

―Zalaz‖ in time domain, and its spectrogram with the 

first four formants. 

Nadia and Toni in [43] proposed to segment these 

semi-words into 33 different phonemes: 28 

consonants representing the essential 28 Arabic 

letters plus 3 phonemes representing the short 

vowels (a, i, u). In addition, as the letter A in the 

Arabic language has two different pronunciations, an 

                                                 
1
These semi-words are in fact ―logatoms‖: artificial 

syllable without meaning. 

extra phoneme was also used for the long form of 

letter A to represent this sound. Also, the silence 

between phonemes and words is represented as a 

phoneme. Figure 3 [44] shows the 33 different 

phonemes classified into different acoustic groups. 

They have manually segmented 2229 phonemes 

corresponding to the 33 classes, from different semi-

words uttered by 4 different speakers. In fact, this 

classification suffers from some problems: long /u/ 

and long /i/ are different from the semi vowels /w/ 

and /y/, the latter are consonants and not taken into 

consideration. This means the clusters labeled /w/ 

and /y/ may contain 2 different clusters each. On the 

other hand, the laterals are only /l/ and /r/ while /j/ 

and /Z/ are voiced fricatives but this error has no 

impact on the clustering experiments. 

 

 
 
 

 

 

 

 

 

Feature Extraction for the whole phoneme seg. 

F
ra

m
e 

fe
at

u
re

s 

Add Vj to 

ExamplartDict 

Sparse Representation Classifier 

Class of Xj: Cj 

Window  Wj 

reshape Wj into a vector Vj 

Clipping: Extract Wj 
Wstart= mid- 
Wend=mid+ 

  

Sparse Coding of Vj X
j
 

Train/test  

Dictionary Learning:  

K-SVD or FDDL 



International Journal of Engineering Trends and Technology (IJETT) – Volume 54 Number 1 December 2017 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 23 

 

Fig 2. Semi word ―Zalaz‖ in time domain (top) and the 

corresponding spectrogram (bottom) 

 

The CSLU speech database contains 22 groups 

for 22 different languages including Arabic [42]. 

The Arabic corpus contains continuous and 

spontaneous telephone speech for 98 callers (70 

males, 32 females, 5 children) from 12 different 

Arab countries (different dialect). Nadia and Toni 

[43] has chosen 1997 wave files corresponding to 17 

male speakers and 17 female speakers, sampled at 8 

kHz and digitized using 8 bits per sample. They have 

manually segmented 3802 phonemes from 33 classes 

in the frequency domain.  

 

Fig 3. Arabic Phoneme categorization [44] 

 
Fig 4. Segmented speech signals corresponding to phonemes: /ا/, 

 in time domain /ث/,/ت/,/ب/

B. Experimental Results 

As the number of phoneme samples in both 

datasets is very limited, instead of dividing the 

dataset into one training set and one test set, we used 

k-fold cross validation, with different values for k 

(5:10), to study the impact of the number of training 

samples on the recognition accuracy. In k-fold cross 

validation, the dataset set is randomly divided into k 

groups of the same size, one group is used for 

testing, while the other k-1 groups are used for 

training. Cross-validation is also suitable for tuning 

the different parameters related to dictionary 

learning and sparse coding solvers. Experiments are 

conducted using Matlab 2014Ra, on a desktop PC 

with 2.13 GHz two processors Intel(R) Xeon(R) 

CPU, and 8 GB RAM.  

For each dataset we have three scenarios: in the 

first scenario we used the exemplars dictionary 

directly, in the second one we used the K-SVD 

dictionary, and in the third we used the FDDL 

dictionary. In the second scenario, for each class 𝑖 ∈
{1. .33} , training exemplars that belong to this 

specific class are passed to the K-SVD dictionary 

learning algorithm, which has 2 parameters to be 

tuned: the number of atoms of the dictionary, and the 

sparsity degree; thus we will have one K-SVD 

dictionary for each class, and those class-specific 

dictionaries will be wrapped together to form one 

whole dictionary to be used by the SRC. In the third 

scenario all the training exemplars are passed to the 

discriminative dictionary learning FDDL algorithm, 

which has three parameters to be tuned: the number 

of atoms per sub-dictionary Di, 𝜆1 the regularization 

parameter that controls the sparsity degree of the 

sparse codes, and  𝜆2  the regularization parameter 

that controls how much Fischer Discrimination is 

imposed on the sparse codes (equation 10). All the 

parameters are tuned through cross-validation. 

Different values for the number of atoms in each 

class specific sub-dictionary were tried and we 

found that the optimal value is 25 atoms for FDDL, 

while it is 20 atoms for K-SVD. In the clipping 

stage, different values for L (2:6) are considered to 

find the best clipping length, which we found to be 3 

frames. 

Table 1 shows the classification error for the 

three scenarios. We can see that FDDL gives about 

6% higher accuracy than the constructive dictionary 

K-SVD, which is quite logical as the FDDL is 

designed to be discriminative. When comparing 

FDDL to plain exemplars dictionary, we found that 

exemplars dictionary gives about 5% higher due to 

the fact that phoneme’s samples of the same class 

have high scatter, and using FDDL which try to 

minimize the within-class scatter is not a good 

choice to impose discrimination on such relatively 

high scattered classes. 

 
Table I. Classification error for different dictionary scenarios 

using GPRS solver 

 

Phoneme database Dictionary 

CSLU2002 KAPD 

46.63% 14.40% Exemplars Dictionary 

51.20% 25.74% K-SVD 

48.61% 19.22% FDDL 
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Table 2 shows the average computational time to 

find the sparse code for each test sample using 

GPRS solver over the different dictionaries. As one 

can see FDDL and K-SVD gives faster computation 

than the exemplars dictionary, this is because the 

number of atoms in both cases is much smaller 

(20×33=660 for K-SVD, and 25×33=1050 atoms for 

FDDL) than the number of atoms of the exemplars 

dictionary which contains the whole training 

exemplars (2007 atoms when we used 90% of the 

whole set for training).  

 
Table II. Average sparse coding time for different dictionary 

scenarios using GPRS solver 

 

Sparse Coding Time 

(second) 

Dictionary 

0.29 Exemplars 

dictionary 

0.09 K-SVD 

0.12 FDDL 
 

 

Table 3 shows the classification error rate using 

different sparse solvers. Sparse coding solvers have 

some parameters to set: sparsity regularization 

parameter which is tuned using cross-validation for 

every solver, and stopping criterion (the sparse 

approximation accuracy, the number of elements in 

the sparse approximation). We used as ―stopping 

criterion‖ the sparse approximation accuracy which 

is set for all solvers to 0.001 for a fair comparison.  

One can see that first order algorithm: GPRS, 

SPGL1, and DALM give the highest accuracy, while 

greedy algorithm OMP gives relatively poor 

performance, and the l2 norm MSE (Mean Squared 

Error estimator) gives the worst performance. This 

proves that the l1 regularization is truly beneficial. 

Also we can note the high difference between 

classification error rate on KAPD dataset (14.73%) 

and CSLU2002 dataset (46.63%). This is because of 

the poor quality of the CLSU2002 speech segments, 

as it contains telephone speech with only 8 KHz 

sampling frequency, from different Arabic accents, 

while the KAPD dataset contains speech recorded in 

a noise free recoding room using 44100 Hz sampling 

frequency, and all speakers have the same Arabic 

accent. 

 
Table III. Classification error (%) for different sparse coding 

solvers using Rasta-PLP features 

 

CSLU2002 

(%)  

KAPD (%) Method 

  56.41 20.32 1-NN k-NN 

 73.14 44.10 L2-MSE l2 Regression 

56.14 20.77 OMP Greedy l0 

46.63 14.73 GPSR First order  
l1-minimization  48.19 14.73 SPGL1 

49.23 16.10 DALM 

 55.32 20.13 L1LS Second order 

l1-minimization  

50.18 16.87 BPDN-
Homotopy 

Homotopy 

 

Table 4 shows the average computational time of 

the sparse coding solvers which we have used in our 

study. We can see the OMP has the lowest 

computational time. As for the l1-minimization 

algorithms, Spectral Projection Gradient for l1 

minimization SPGL1 is the fastest. We can see that 

almost all first order methods are relatively fast with 

the exception of DALM. The problem with DALM 

is that it includes three inner minimization sub-

problems. We note that GPRS gives also relatively 

higher computational time due to the fact that the 

size of the problem is doubled by splitting x into 

positive and negative parts which make the GPRS 

complexity  𝑂(𝑁2) , while the SPGL1 complexity 

𝑂 𝑁𝑀  where 𝑀 , 𝑁  are the dimensions of the 

dictionary. In our case 𝑀 = 57 (3 frames, each has 

19 Rasta-PLP coefficients) and 𝑁 = 2007 (90% of 

all the 2229 training samples). 
 

 

Table IV. Sparse coding solvers average time 

 

Time(sec) Coding Method 

0.023 MSE L2 regression 

0.0007 OMP Greedy l0 

0.29 GPSR First order l1-

minimization first 

order 
0.03 SPGL1 

1.03 DALM 

1.73 L1LS Second order l1-

minimization 

0.023 BPDN-

Homotopy 

Homotopy 

 
 

Table 5 shows how using different speech 

features (MFCC, Rasta-PLP, SPARK, Gammatone) 

affects classification accuracy. As we can see the 

Rasta-PLP of order 18 gives the highest accuracy. 

 
Table V. Classification error (%) for different speech features, for 

the two dataset KAPD and CSLU2002. 
 

Features KAPD CSLU2002 

MFCC 17.20 52.23 

RASTA-PLP 14.73 46.63 

Gammaton 20.10 54.10 

SPARK 19.31 53.31 

 

Table 6 shows how the size of the training set 

affects the classification accuracy of the proposed 

system, compared to the performance of the k-NN 

classifier. The experiments were conducted using 

Rasta-PLP feature on KAPD dataset. The sparse 

coding solver which has been used in these 

experiments was the GPRS solver. We can see that 

an increase of about 3% is verified for all sizes of 

the training set.  
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Table VI. Classification error (%) for the proposed SCPCS and 
kNN vs different percentage of training set size out of the whole 

dataset  

 

Size of Training 

Set (%) 

SCPCS kNN 

95 14.40 18.15 

90 15.33 18.54 

80 16.37 20.04 

70 19.60 22.36 

60 21.42 24.91 

50 24.15 27.65 

 

Figure 5 shows the classification error for each 

phoneme. As we can see, plosive phonemes such as 

/ba/,/ta/ have high misclassification rate, as they are 

generally hard to recognize. Also the unvoiced 

fricative /fa/ has the highest misclassification, as the 

number of available training samples is low (only 47 

samples for phoneme /fa/ while the mean of the 

training samples per phoneme is 61), and it is 

confused with the fricative phoneme /th/. The vowel 

/Aa/ also has a high misclassification rate and it is 

only confused with the short vowel /a/ (Fatha). The 

voiced phoneme /Da/ ض and the vowel /wa/ have 

the lowest classification error. The phoneme / Da 

/was confused with only one phoneme which is /Ha/ 

 and also /wa/ was confused with only one ,ح

phoneme which the short vowel /u/ (Damah). The 

vowel /ya/ ي was only confused with the short vowel 

/i/ (Kasra).  While the short vowel /i/ was confused 

with three phonemes: /ya/, /ha/ and /ba/, because the 

speech segments for these phonemes include in part 

the sound of the short vowel /i/.  This means that we 

need a better dictionary that can represent multi-

scale information.  

Figure 6 shows the classification error as a 

function of number of training samples for each 

phoneme (as we have different number of samples 

per class according to the dataset we had from Nadia 

[43]), and it is clear that classification error 

decreases in general, as the number of training 

samples in each class increases. 
 
 

Fig 5. Phoneme classification error. 

 

 
 

 
 

 

Fig 6. Phoneme misclassification error vs number of 

trainingexemplars for KAPD dataset 

 

V. CONCLUSION 

In this paper a sparse coding based phoneme 

recognition system is proposed.The system 

performance has been evaluated using two Arabic 

phoneme databases. Experimental Results prove that 

the proposed system outperforms state of the art 

results in the studied dataset with accuracy 85.3% on 

KAPD dataset and 53.4% on CSLU2002 dataset, 

while the accuracy achieved using Echo State Neural 

Networks is 72.31 % and 38.2% respectively [43].  

We have found that choosing the sparse coding 

solver affects the recognition accuracy; greedy 

solver gives relatively lower classification accuracy 

though they are very fast, while first order solvers 

like GPRS and SPGL1 gives the highest accuracy, 

with low computational complexity. We found that 

Spectral Projected Gradient for l1 minimization 

(SPGL1) is the most suitable sparse coding 

algorithm in the context of phoneme classification, 

as opposed to DALM in the context of face 

recognition [19], as it gives the highest accuracy 

with minimum computational time. Also we have 

found that the best value for the sparsity 

regularization parameter (𝜆) is the same for the two 

datasets. 

Comparing different scenarios for dictionary 

learning, we have found that using a discriminative 

dictionary learning algorithm does not enhance the 

classification accuracy because the speech samples 

of specific phoneme have high within-class scatter, 

so Fischer criterion to decrease inter-class scatter is 

not a good scheme to increase the discrimination of 

the sparse code. We have found that the only 

advantage of using learned dictionaries in the 

context of phoneme classification is the lower 

computational time of the sparse code as the 

dictionary become more compact. 

Different well-known speech features were 

compared, and we found that Rasta-PLP of order 18 

provides the best accuracy, with 2% higher accuracy 

than the famous MFCC features. 

Finally, we have found that the number of 

training samples affects the discriminative ability of 

the exemplars dictionary, and increasing the number 

% 0̂ Aa ba ta va ja Ha xa da !a ra za sa $a Sa Da Ta Za Ea ga fa qa ka la ma na ha wa ya a i u
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of atoms for each exemplars sub-dictionary enhance 

the discriminative power of this dictionary, while 

increasing the number of atoms for the learned K-

SVD and FDDL dictionary over a specific optimal 

value tuned through cross validation decreases the 

classification accuracy. This is due to that fact that in 

both dictionary learning algorithms we are learning 

from a specific training set with a fixed size, so we 

can capture all the information using an optimal 

value of atoms, and increasing the number of atoms 

to represent this specific training set will only 

include more redundancy that increases the 

―coherence‖ of the dictionary, which has been 

proven to produce poor sparse approximation [46]. 

While increasing the size of the training set in 

learning K-SVD and FDDL improves the 

classification accuracy for a specific optimal number 

of atoms. 

Further works regarding the relation between the 

sparse coding approximation accuracy and 

classification accuracy, and how to build a compact 

discriminative dictionary more suitable for the 

specific case of speech data needs to be addressed in 

future; especially, after validation of the datasets 

segmentation by linguistic experts. 
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