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Abstract - In this study, the authors explore advanced methodology, which consists of two methods to predict chess strategies 

utilizing a neural network approach: tensor construction and a novel method, which is the move-to-delta framework. The 

approach commences with dataset curation from the esteemed Lichess database, transitions through tensor construction using 

a refined piece-centric representation, and an innovative model training underpinned by the "move-to-delta" conceptual 

framework. Pivotal components of the methodology are the strategic utilization of seed variability ranging from number 1 to 100 

and exploring the impact of four different batch sizes (64, 128, 256, and 512), illuminating the nuanced interplay of weight 

initialization in neural training. The model’s performance is evaluated using two evaluation methods: the number of puzzles 

solved and performance metrics (MSE, MAE, and R-squared). Notably, the model initialized with seed number 33 and batch size 

128 achieved exceptional capability, solving four positions out of the 25 Kaufman Test puzzles. This signifies an achievement 

that significantly surpasses extant chess engines, which, at best, resolve two Kaufman puzzles. This finding underscores the 

essential role of weight initialization, the usage of the move-to-delta framework, and the value of rigorous experimentation in 

the realm of chess move prediction through deep learning. 

Keywords - Chess, Convolutional Neural Network, Deep learning, Kaufman Puzzle, Supervised learning.

1. Introduction 
Predicting the outcome of a chess game has been the 

pinnacle of testing the performance of artificial intelligence. 

Some use machine learning, such as the hidden Markov model 

[18], and some use MLP. In the recent decade, deep learning 

has changed the scene for chess engines. The crossroads of 

artificial intelligence and chess has been a transformative 

force in computer science. Renowned models like AlphaZero 

[1] and DeepChess [2] epitomize this evolution, with their 

ascent tracing back to pioneering efforts like the Giraffe 

engine in 2015 [3]. 

At their core, modern chess engines are more than just 

computational tools—they are deep strategic partners. 

Benefiting from the synthesis of human experience and 

machine precision, these engines dissect vast potential 

outcomes and reshape the fabric of chess strategies, pushing 

the boundaries of traditional human intuition. 

Chess, a game marked by its intricate nuances and 

strategies, thrives on acute decision-making. The limitations 

of initial brute-force engines illuminated the need for nuanced, 

sophisticated approaches that could mirror the complexity and 

depth of the game itself. Historically, the allure of chess has 

been its intellectual challenge. With the advent of technology, 

this allure has expanded, encompassing the intriguing dance 

between human minds and computational might. This 

dynamic duo has catalyzed advancements across algorithms, 

methodologies, and evaluative parameters in computational 

research. 

With all recent advancements, there are still 

inconsistencies in the results. Two Kaufman positions were 

solved using MLP [9]. Moreover, they claimed that the model 

that used MLP was far superior to the model using CNN. 

However, in a more recent paper, the model that used MLP 

was not able to solve a single Kaufman position [11]. This 

indicates that the results from both papers are not consistent. 

These results sparked the investigation of which 

techniques and methods can produce consistent results. This 

paper aims to explore deep learning approaches to discover the 

best techniques and methods for finding the best optimal 

moves by using board positions.  

2. Literature Review 
2.1. Chess Engine Architecture 

Chess engines have undergone a remarkable evolution, 

transitioning from early brute-force methods to sophisticated 

combinations of heuristics and algorithms.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The architecture of a typical chess engine consists of 

several key components that work in harmony: board 

representation, move generation, search, and evaluation [4]. 

There are numerous types of board representation. It is 

mainly divided into three groups: piece-centric, square-

centric, and hybrid. A piece-centric representation maintains 

lists, arrays, or sets of all pieces that are still on the board, 

along with information about the squares they are now 

occupying. A square-centric representation applies the inverse 

association, checking whether a square is vacant or not. Lastly, 

hybrid representation typically mainly uses the square-centric 

representation with a list of pieces [5]. 

The evaluation function is a core component that assesses 

the strength of a given position. Heuristics such as material 

balance, piece square tables, mobility, and king safety 

contribute to the evaluation score. However, this score is often 

based on shallow calculations that do not capture complex 

positional nuances. The search component employs 

algorithms to search all possible moves.  

2.2. Deep Learning in Chess 

The application of deep learning in chess has opened new 

avenues for addressing the limitations of traditional evaluation 

functions. Neural networks, which consist of interconnected 

layers of artificial neurons, have demonstrated the ability to 

learn complex patterns and relationships from data. Various 

common deep learning models that are used are MLP, CNN, 

and RNN. One of the ways to evaluate these models is to use 

the Kaufman test. 

2.2.1. Kaufman Test 

The Kaufman test is a set of problems that was proposed 

by Lawrence Charles Kaufman, an American chess 

Grandmaster. Kaufman proposed 25 problems that are 

intended to test the strength of a chess engine. He published 

these problems in a report called the Computer Chess Report 

(CCR).  

He published the first 20 problems in 1992 [6] and the last 

5 in the late-1992/early 1993 [7]. Later on, because of the 

popularity of the problems, they reprint the whole set in a later 

edition of the CCR [8]. The Kaufman Test is often used to 

evaluate the performance of chess engines. 

2.2.2. Deep Learning Models 

Multilayer Perceptron (MLP) models have been used as a 

means to evaluate chess positions. The research was 

conducted with the aim of evaluating position [9] using 

3.000.000 unique chess positions that are played by top chess 

players and utilizing a limited lookahead searching algorithm. 

Algebraic and bitmap were used as the input. Based on their 

research, the performance of MLPs trumps CNNs in terms of 

architecture in chess with 96%, 93%, and 68% accuracy across 

3 out of 4 datasets. When tested using the Kaufman test, the 

model is only able to solve two positions, which are position 

numbers 3 and 6. 

Another research conducted by [11] used thousands of 

games that were parsed and created the board representation. 

Each of those games was given a centipawn score generated 

by the Stockfish 10 engine. The first two hidden layers had 

2048 neurons, and the rest of the four hidden layers had 1024 

neurons, with a total of six hidden layers that made up the 

architecture. Each of those hidden layers used Rectifier Linear 

Unit (ReLU) as the activation function except the output layer 

that utilized hyperbolic tangent. The model failed to solve the 

Kaufman test. 

The use of limited lookahead is also an interest in [10]. 

The difference between Maesumi’s paper and Sabatelli’s 

paper is the dataset, and instead of labeling it manually, he 

used a deep autoencoder. Features that are used by Maesumi 

are the positions of each piece type, the turn, castling rights 

for both colors, and whether a position is in check. In total, the 

board representation is a vector with 775 binary features. Like 

other papers, Maesumi used centipawn (cp) as the evaluation 

number. He classified the position into 3 types: Black winning 

(cp less than or equal to -150), drawish (cp is less than or equal 

to 150 or more than or equal to -150), and White winning (cp 

is more than or equal to 150). The model that Maesumi 

proposed has some lookahead information in its evaluation. 

When the output of his model and Stockfish are compared, his 

model can assess the positions without any lookahead 

algorithm. Next, he made a search algorithm with his model 

as its core. When the search algorithm is used with a depth of 

5, 83% of the moves chosen have the same strength as moves 

chosen by Stockfish at depth 23. 

The integration of Convolutional Neural Networks 

(CNNs) in chess analysis has been particularly impactful. 

CNNs are well-suited for spatial pattern recognition, making 

them adept at processing board positions. They can learn 

meaningful features from raw board representations, such as 

bitboards or encoded states, and capture intricate patterns that 

contribute to position strength. 

The researchers [12] used bitmap input based on the 

position of this research for each unique piece. It is then 

converted to make a chess engine using convolutional neural 

networks (CNNs). It was trained using 20.000 games 8 x 8 x 

6 images that have an ELO rating above 2000.  

The architecture of this corresponds to the width and 

height of the board and the six unique pieces that are denoted 

with +1 and -1, white and black pieces, respectively. The 

network consists of two parts: the move selector and the piece 

selector. 26 games out of 100 games were drawn, and lost the 

rest when it was faced with the Sunfish chess engine. The 

author claimed that CNNs are useful in pattern recognition of 

small tactics.
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In a similar manner [17], bitmap input was used to 

represent the chess board. The neural network that used the 

bitmap input has better results than using the algebraic input. 

In another paper [16], an 8 x 8 x 12 arrays are also used as the 

input of a recurring neural network. An 8 x 8 mask of the target 

and origin position of a chess piece is utilized as the output of 

the network. 

CWU-Chess [15] used a different approach – using hand-

crafted features as the input of the neural network. 10 distinct 

features were chosen: bishop pair, double pawns, numerical 

advantage, isolated pawns, pawns advance, passed pawns, 

mobility, defensive coordination, center control, and king 

safety. Genetic algorithm was chosen instead of the traditional 

CNNs. The chess engine can play the games within the first 4 

generations. 

[13] researched a similar game with Chess, Hex. The 

authors show that a compact representation utilizing the most 

common bridge pattern can achieve reasonable accuracy. The 

neural network is integrated with Monte Carlo tree search to 

enhance performance. Challenges include imperfect training 

data and the non-trivial combination of neural nets and search. 

The best accuracy achieved on test data is 54.8%. In addition, 

the paper shows that the neural network can achieve 

reasonable playing strength without the need for a search 

function, which is a significant advantage over traditional 

methods. 

Go is another game that is often used to train deep 

learning models. A research paper [20] used an ensemble of 

CNNs as their deep learning architecture. The model was able 

to predict 36.9% of the expert moves. In a more recent paper 

[19], instead of ensemble methods, CNNs are used to train. 

The model can accurately predict 55% of the positions. 

Furthermore, it beats GnuGo (a search-based program) in 97% 

of games played. 

Lastly, [14] Chess2vec is an innovative approach that 

converts chess pieces into vectors for move prediction and 

analysis. Using the matrix representation with position-

dependant piece vectors, a multiclass test was conducted that 

accurately predicts 8.8% of the moves of Stockfish. These 

diverse approaches collectively contribute to the ongoing 

evolution of AI in the realm of chess, offering insights and 

advancements that continue to shape the field. 

3. Data and Methods 
This paper aims to develop a model that can determine the 

optimal chess moves from board positions. The proposed 

solution uses a novel framework namely the move-to-delta 

framework with chessboard positions that is integrated into a 

deep learning model. The deep learning model is trained using 

seed initialization and a single hyperparameter tuning which 

is the utilization of four different batch sizes (64, 128, 256, 

and 512). Callbacks are utilized to aid with the training 

process. EarlyStopping to stop the training process early based 

on the improvement of the metric that is used, 

ReduceLROnPlateau to reduce the learning rate on metric that 

plateaus and ModelCheckpoint to save the best model.  

The training process starts with collecting and preparing 

the dataset. Utilizing the dataset, it is converted into the inputs 

for the model: tensor to represent the state of the chessboard 

and evaluation of the chessboard converted using the move-

to-delta framework. After that, the dataset is split into training 

and validation datasets with an 80:20 ratio, respectively. The 

training process is divided into four based on the number of 

batch sizes. Each of those batch sizes trains the model by 

utilizing seeds ranging from 1 to 100. Each seed is trained 

using the Adam optimizer and 100 epochs outputting in a total 

of 400 different models. 

3.1. Software 

To realize this solution, a software environment must be 

used. The main programming language that is used is Python. 

Utilizing the various available packages, a few were chosen: 

pickle, which is a file type to store the converted dataset, 

TensorFlow which is a Python package to help create deep 

learning models, NumPy which is a Python package that 

contains a lot of mathematical functions, scikit-learn to help 

with the preprocessing, and lastly, python-chess which aids 

with any chess related problems. 

3.2. Dataset Preparation 

Initially, the dataset is acquired in Portable Game 

Notation (PGN) format, which includes chess games with 

move sequences and outcomes. The dataset is sourced from 

the Lichess database website, which houses 4 billion standard-

rated games and 3 million puzzles. For this research, we 

selected data from “2023-March” and further filtered it only 

to include games with the Grandmaster title. The filtered set 

contains 3,862 games out of 108,201,825. 

3.3. Tensor Construction and Mapping 

Subsequently, this PGN data is converted into board 

representations using a piece-centric representation type. This 

board representation method encompasses piece types, their 

colors, and blank spaces. Tensor building involves converting 

these board representations into tensors suitable for neural 

network processing. This is achieved using a mapping that 

translates board pieces into numeric values, forming the input 

tensors. At the heart of this process lies the Forsyth–Edwards 

Notation (FEN), a standard representation system that 

captures the current state of a chess game. A typical FEN 

string succinctly represents piece positions, active color, 

castling rights, en passant target square, half-move clock, and 

full-move number. For instance, the starting position of a 

chessboard is represented as 

"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w 

KQkq - 0 1". 
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Fig. 1 Board representation 

 
To transform the FEN notation into tensors, we utilize a 

predefined mapping system. Each unique character in the 

FEN, representing different chess pieces, is mapped to a 

specific numeric value in the range of 1 to 6 (see Figure 1). 

The value's sign indicates the piece's color: positive for white 

and negative for black. For instance, 'r' (black rook) is mapped 

to -5, while 'R' (white rook) is mapped to 5. Empty squares in 

FEN, denoted by numbers, are expanded into consecutive 

zeroes. So, '4' translates to '0000'. Using this mapping, the 

FEN string is then translated into a matrix. In the context of an 

8x8 chessboard, this results in an 8x8 tensor. The values in this 

tensor, derived from our mapping, serve as inputs for the 

neural network. 
 

3.4. Move-to-Delta 

Traditional evaluation methods often look at board 

positions in isolation, neglecting the fluidity and dynamism of 

the game of chess. However, with the "move to delta" concept, 

we directly target the outcome of individual moves. This 

approach inherently factors in the broader game strategy and 

the ever-changing nature of chess battles. At the core of our 

training process is a unique labeling approach, termed the 

"move to delta" concept. It serves as a pivotal tool in 

understanding and quantifying the inherent value and strategic 

ramifications of each potential chess move. Here is how it 

functions: the model compares the evaluation score of a 

chessboard position before a move is made to the score after 

its execution (see Figure 2). This differential — the delta — 

encapsulates the move's efficacy and becomes the label for our 

training data. By training our model using these delta values, 

we enable it to grasp not just the intrinsic value of board 

positions but also the nuanced implications of each move 

within the grand scheme of the game. This gives the neural 

network a holistic understanding, sharpening its ability to 

recommend moves that could significantly shift the balance of 

power in a match. 

 
Fig. 2 Move-to-Delta 

3.5. Evaluation Methods 

After the training process, it is important to evaluate the 

models. The models will be evaluated in two methods: 

subjected to 28 chess puzzles and performance metrics. To 

adapt to real-world application and reliability, the model is 

subjected to 25 Kaufman tests, Plaskett’s puzzle, and the two 

most common checkmate patterns: the Fool’s mate and the 

Scholar’s mate. Each of the puzzles is paired with the best 

move so that the model’s best move can be compared to the 

best move of the puzzle. 

In the beginning, the puzzle will be inserted into a search 

algorithm that searches all of the possible legal moves. Then, 

each of those legal moves is evaluated using the trained model 

to output an evaluation score. After that, the best evaluation 

score is matched against the best move from the puzzle. The 

best model is the model that solved the highest number of 

puzzles. 

The other evaluation method is to measure the 

performance metrics of each of the models. The performance 

metrics that are used are Mean Squared Error (MSE), Mean 

Absolute Error (MAE), and R-squared (R2). The MSE 

measures the average squared difference between the 

predicted value and the actual value, whilst the MAE measures 

the absolute difference between the predicted and the actual 

value formulated in Equations 1 and 2, respectively. R-

squared measures a bit differently (see Equation 3). R-squared 

determines whether the model is a good fit or not. Within the 

range of 0 to 1, 1 is the best-fitted model, while 0 is the worst-

fitted model. 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1                    (1) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖|

𝑁
𝑖=1                    (2) 

𝑅2 = 1 −  
∑ (𝑦𝑖−�̂�𝑖)𝑖

2

∑ (𝑦𝑖−�̅�)𝑖
2                    (3) 

3.6. Model Architecture 

A Convolutional Neural Network (CNN) is structured for 

the interpretation of 8x8 grid representations, a format that 

corresponds with the dimensions of a chessboard (see Figure 

3). The network commences with an input layer to accept the 

predefined shape of the data. It integrates two convolutional 

layers with Rectified Linear Unit (ReLU) activations, 

interposed with a max pooling layer for the abstraction of data 

and a dropout layer to reduce overfitting risks.  

A flattening layer transitions the network from two-

dimensional feature maps to a one-dimensional vector. This 

vector feeds into a dense layer with ReLU activation for 

nonlinear transformation, followed by another dropout layer 

for regularization. The architecture concludes with a dense 

output layer, which serves to evaluate the positional strength 

of the chessboard which outputs an evaluation score. 



Muhammad Faiz Arsalan & Haryono Soeparno / IJETT, 72(4), 43-50, 2024 

 

47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Model architecture 

4. Results and Discussion 
Since the model is subjected to two methods of evaluation, 

the results are divided into three, with the discussion session 

after the first two results from the two evaluation methods. 

The first section consists of the results from the models that 

are subjected to 28 different puzzles. The second section 

consists of the performance metrics from the trained models. 

Lastly, the last section contains a discussion of both methods 

and additional observations. 

4.1. 28 Puzzles Result 

After the model is trained, all of the models are subjected 

to 28 puzzles with the goal of finding the model that has the 

highest number of puzzles solved. Figure 4 illustrates the total 

correct positions for each of the seed numbers for each batch 

size. The seed numbers are on the x-axis, while the total 

correct positions lie on the y-axis. Each seed number consists 

of 4 colored bars representing the batch sizes – the colors blue, 

orange, green, and red representing batch sizes 64, 128, 256, 

and 512, respectively. Next, Figure 5 illustrates the frequency 

of each position. The puzzle number is fitted on the x-axis, 

while the total correct positions are on the y-axis. Not all of 

the seed numbers yielded results; hence, the seed numbers do 

not have the full range from 1 to 100 illustrated in Figure 4. 

Furthermore, not all batch sizes within a seed number yield 

results. Only a few seed numbers that have all of the batch 

sizes solved at least 1 puzzle. Lastly, two models solved the 

highest number of puzzles: seed number 33 with a batch size 

of 128 and seed number 65 with a batch size of 64. Each of 

those models is able to solve 4 different puzzles. Both models 

are able to solve puzzle number 18, with puzzle number 20, 

22, and 24 solved by the first model and puzzle numbers 9, 11, 

and 21 by the second model. 14 puzzles out of 28 puzzles were 

solved by various seed numbers illustrated in Figure 5. It 

consists of 12 Kaufman puzzles, the Fool’s Mate, and the 

Plaskett’s Puzzle. Not all positions are present on all of the 

batch sizes. Position 5 and 22 are not present on batch sizes 

128 and 512, position 23 is only present on batch size 128, and 

puzzle 28 is only present on batch size 64. The highest 

frequency of the number of puzzles solved is puzzle number 

18, especially on the batch size of 128. The puzzle numbers 

that are present are 5, 9, 11, 16, 18, 19, 20, 21, 22, 23, 24, 25, 

26, and 28.   

4.2. Performance Metrics 

The performance metrics revealed an interesting 

observation. Using Table 1, the model is measured using 

MSE, MAE, and R-squared. It is evident that within the batch 

size of 64, the best model lies in seed number 91, with the 

lowest MSE and MAE and the highest R-squared. This pattern 

is also observed within the batch size of 256 where the lowest 

MSE and MAE, and the highest R-squared are in a single seed 

number, in this case, seed number 23 with the metrics of 

164.352, 9.56, and 0.1343, respectively. This pattern breaks 

on the other two batch sizes where no seed number dominates 

the performance metrics. It is also evident that there is another 

pattern that is present. All of the batch sizes except for batch 

size 64 have seeds that have both the lowest MSE and the 

highest R-squared. Batch size 128 with seed number 80, batch 

size 256 with seed number 256, and batch size 512 with seed 

number 13. Further observations revealed that there is yet 

another pattern where the seed number has the highest MSE 

and MAE and the lowest R-squared on their respective batch 

sizes. This can be observed in batch size 64 with seed number 

44, batch size 128 with seed number 21, and batch size 256 

with seed number 28. 

Input_1 

Input Layer 

Input: 

Output: 

[(None, 8, 8, 1)] 

[(None, 8, 8, 1)] 

conv2d 

Conv2D 

Input: 

Output: 
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Fig. 4 Total Correct Positions for Each Batch Size for Each Seed 

Fig. 5 Frequency for Each Position Number for Each Batch Size 
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Table 1. Performance metrics 

Batch Size 

MSE MAE R2 

Min Max Min Max Min Max 

Seed Value Seed Value Seed Value Seed Value Seed Value Seed Value 

64 91 164.404 44 166.02 91 9.55 44 9.657 44 0.1256 91 0.1340 

128 80 153.035 21 161.11 78 9.16 21 9.427 21 0.1514 80 0.1939 

256 23 164.352 28 165.69 23 9.56 28 9.649 28 0.1273 23 0.1343 

512 13 164.369 99 165.71 47 9.57 28 9.646 99 0.1272 13 0.1342 

Table 2. Performance metrics with total positions 

Batch Size Seed Total Positions Perf. Metrics 

64 
44 1 Highest MSE and MAE Lowest R2 

91 - Lowest MSE and MAE Highest R2 

128 

21 1 Highest MSE and MAE Lowest R2 

78 - Lowest MAE 

80 - Lowest MSE and Highest R2 

256 
23 1 Lowest MSE and MAE Highest R2 

28 - Highest MSE and MAE Lowest R2 

512 

13 1 Lowest MSE and Highest R2 

28 - Highest MAE 

47 - Lowest MAE 

99 - Highest MSE and Lowest R2 

Table 3. Best models 

Seed Number Batch Size MSE MAE R2 Total Position 

65 64 165.064 9.589 0.131 4 

33 128 156.667 9.291 0.175 4 

4.3. Discussion 

Determining the best model is based on the two methods 

that have been analyzed. The ideal model can solve several 

puzzles and has a good performance metric.  

To begin, Table 2 provides the seeds from the best 

performance metrics and subjects them to the puzzles that the 

model is able to solve. It is evident that despite the good 

performance metrics, almost all of the seeds cannot solve one 

out of the 28 puzzles, with a few exceptions being seed 

number 44 with batch size 64, seed number 21 with batch size 

128, seed number 23 with batch size 256, and seed number 13 

with batch size 512.  

Out of those 4 seed numbers, two of which have the highest 

MSE and lowest R-squared whilst the other two seed numbers 

have the exact opposite – lowest MSE and highest R-squared. 

It is to be expected that the lowest MSE and MAE with the 

highest R-squared has the highest number of puzzles solved 

yet the result does not reflect this.  Since two models have the 

same highest number of number of puzzles solved, the 

performance metric can determine which one of the two 

models reigns as the champion. Using Table 3, it is evident 

that the model with seed number 33 with batch size 128 is the 

best based on the lowest MSE and MAE with the highest R-

squared out of the two models with 156.667, 0.291, and 0.175, 

respectively. 

Therefore, it can be concluded that models cannot be 

evaluated solely on performance metrics. It is important to 

blend both methods by prioritizing the number of puzzles 

solved first and then using performance metrics to determine 

the best model. 

5. Conclusion 
The primary criterion for selecting the best model was its 

capability to predict the optimal chess moves. Using an 

exhaustive comparison of two evaluation methods that 

compared models based on their number of puzzles solved and 

using MSE, MAE, and R-squared as the performance metric 

across a range of 100 different seeds and four different batch 

sizes revealed a clear frontrunner, the model trained using seed 

33 with batch size 128. Notably, this model, when tested 

against 28 puzzles, managed to successfully solve four out of 

the 28 puzzles consisting of 4 Kaufman puzzles (position 18, 

20, 22, and 24), which trumps the latest advancement that only 

able to solve two positions out of the 25 Kaufman puzzles 

(position 3 and 6). Furthermore, the usage of two methods is 

better to be used in harmony rather than on its own. It is 

important to prioritize the number of puzzles solved first and 

then utilize performance metrics as a supplement method. To 

conclude this paper, some points can be improved for future 

studies, such as increasing the size of the dataset, exploring 

other evaluation methods, and exploring other types of games 

that are similar to chess. 
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