
International Journal of Engineering Trends and Technology Volume 72 Issue 4, 43-50, April 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I4P105 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Deep Learning Approaches to Predicting the Optimal

Chess Moves from Board Positions

Muhammad Faiz Arsalan1, Haryono Soeparno2

1,2Department of Computer Science, Master of Computer Science, BINUS University, Jakarta, Indonesia.

1Corresponding Author : muhammad.arsalan@binus.ac.id

Received: 21 November 2023 Revised: 29 March 2024 Accepted: 09 April 2024 Published: 24 April 2024

Abstract - In this study, the authors explore advanced methodology, which consists of two methods to predict chess strategies

utilizing a neural network approach: tensor construction and a novel method, which is the move-to-delta framework. The

approach commences with dataset curation from the esteemed Lichess database, transitions through tensor construction using

a refined piece-centric representation, and an innovative model training underpinned by the "move-to-delta" conceptual

framework. Pivotal components of the methodology are the strategic utilization of seed variability ranging from number 1 to 100

and exploring the impact of four different batch sizes (64, 128, 256, and 512), illuminating the nuanced interplay of weight

initialization in neural training. The model’s performance is evaluated using two evaluation methods: the number of puzzles

solved and performance metrics (MSE, MAE, and R-squared). Notably, the model initialized with seed number 33 and batch size

128 achieved exceptional capability, solving four positions out of the 25 Kaufman Test puzzles. This signifies an achievement

that significantly surpasses extant chess engines, which, at best, resolve two Kaufman puzzles. This finding underscores the

essential role of weight initialization, the usage of the move-to-delta framework, and the value of rigorous experimentation in

the realm of chess move prediction through deep learning.

Keywords - Chess, Convolutional Neural Network, Deep learning, Kaufman Puzzle, Supervised learning.

1. Introduction
Predicting the outcome of a chess game has been the

pinnacle of testing the performance of artificial intelligence.

Some use machine learning, such as the hidden Markov model

[18], and some use MLP. In the recent decade, deep learning

has changed the scene for chess engines. The crossroads of

artificial intelligence and chess has been a transformative

force in computer science. Renowned models like AlphaZero

[1] and DeepChess [2] epitomize this evolution, with their

ascent tracing back to pioneering efforts like the Giraffe

engine in 2015 [3].

At their core, modern chess engines are more than just

computational tools—they are deep strategic partners.

Benefiting from the synthesis of human experience and

machine precision, these engines dissect vast potential

outcomes and reshape the fabric of chess strategies, pushing

the boundaries of traditional human intuition.

Chess, a game marked by its intricate nuances and

strategies, thrives on acute decision-making. The limitations

of initial brute-force engines illuminated the need for nuanced,

sophisticated approaches that could mirror the complexity and

depth of the game itself. Historically, the allure of chess has

been its intellectual challenge. With the advent of technology,

this allure has expanded, encompassing the intriguing dance

between human minds and computational might. This

dynamic duo has catalyzed advancements across algorithms,

methodologies, and evaluative parameters in computational

research.

With all recent advancements, there are still

inconsistencies in the results. Two Kaufman positions were

solved using MLP [9]. Moreover, they claimed that the model

that used MLP was far superior to the model using CNN.

However, in a more recent paper, the model that used MLP

was not able to solve a single Kaufman position [11]. This

indicates that the results from both papers are not consistent.

These results sparked the investigation of which

techniques and methods can produce consistent results. This

paper aims to explore deep learning approaches to discover the

best techniques and methods for finding the best optimal

moves by using board positions.

2. Literature Review
2.1. Chess Engine Architecture

Chess engines have undergone a remarkable evolution,

transitioning from early brute-force methods to sophisticated

combinations of heuristics and algorithms.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Muhammad Faiz Arsalan & Haryono Soeparno / IJETT, 72(4), 43-50, 2024

44

The architecture of a typical chess engine consists of

several key components that work in harmony: board

representation, move generation, search, and evaluation [4].

There are numerous types of board representation. It is

mainly divided into three groups: piece-centric, square-

centric, and hybrid. A piece-centric representation maintains

lists, arrays, or sets of all pieces that are still on the board,

along with information about the squares they are now

occupying. A square-centric representation applies the inverse

association, checking whether a square is vacant or not. Lastly,

hybrid representation typically mainly uses the square-centric

representation with a list of pieces [5].

The evaluation function is a core component that assesses

the strength of a given position. Heuristics such as material

balance, piece square tables, mobility, and king safety

contribute to the evaluation score. However, this score is often

based on shallow calculations that do not capture complex

positional nuances. The search component employs

algorithms to search all possible moves.

2.2. Deep Learning in Chess

The application of deep learning in chess has opened new

avenues for addressing the limitations of traditional evaluation

functions. Neural networks, which consist of interconnected

layers of artificial neurons, have demonstrated the ability to

learn complex patterns and relationships from data. Various

common deep learning models that are used are MLP, CNN,

and RNN. One of the ways to evaluate these models is to use

the Kaufman test.

2.2.1. Kaufman Test

The Kaufman test is a set of problems that was proposed

by Lawrence Charles Kaufman, an American chess

Grandmaster. Kaufman proposed 25 problems that are

intended to test the strength of a chess engine. He published

these problems in a report called the Computer Chess Report

(CCR).

He published the first 20 problems in 1992 [6] and the last

5 in the late-1992/early 1993 [7]. Later on, because of the

popularity of the problems, they reprint the whole set in a later

edition of the CCR [8]. The Kaufman Test is often used to

evaluate the performance of chess engines.

2.2.2. Deep Learning Models

Multilayer Perceptron (MLP) models have been used as a

means to evaluate chess positions. The research was

conducted with the aim of evaluating position [9] using

3.000.000 unique chess positions that are played by top chess

players and utilizing a limited lookahead searching algorithm.

Algebraic and bitmap were used as the input. Based on their

research, the performance of MLPs trumps CNNs in terms of

architecture in chess with 96%, 93%, and 68% accuracy across

3 out of 4 datasets. When tested using the Kaufman test, the

model is only able to solve two positions, which are position

numbers 3 and 6.

Another research conducted by [11] used thousands of

games that were parsed and created the board representation.

Each of those games was given a centipawn score generated

by the Stockfish 10 engine. The first two hidden layers had

2048 neurons, and the rest of the four hidden layers had 1024

neurons, with a total of six hidden layers that made up the

architecture. Each of those hidden layers used Rectifier Linear

Unit (ReLU) as the activation function except the output layer

that utilized hyperbolic tangent. The model failed to solve the

Kaufman test.

The use of limited lookahead is also an interest in [10].

The difference between Maesumi’s paper and Sabatelli’s

paper is the dataset, and instead of labeling it manually, he

used a deep autoencoder. Features that are used by Maesumi

are the positions of each piece type, the turn, castling rights

for both colors, and whether a position is in check. In total, the

board representation is a vector with 775 binary features. Like

other papers, Maesumi used centipawn (cp) as the evaluation

number. He classified the position into 3 types: Black winning

(cp less than or equal to -150), drawish (cp is less than or equal

to 150 or more than or equal to -150), and White winning (cp

is more than or equal to 150). The model that Maesumi

proposed has some lookahead information in its evaluation.

When the output of his model and Stockfish are compared, his

model can assess the positions without any lookahead

algorithm. Next, he made a search algorithm with his model

as its core. When the search algorithm is used with a depth of

5, 83% of the moves chosen have the same strength as moves

chosen by Stockfish at depth 23.

The integration of Convolutional Neural Networks

(CNNs) in chess analysis has been particularly impactful.

CNNs are well-suited for spatial pattern recognition, making

them adept at processing board positions. They can learn

meaningful features from raw board representations, such as

bitboards or encoded states, and capture intricate patterns that

contribute to position strength.

The researchers [12] used bitmap input based on the

position of this research for each unique piece. It is then

converted to make a chess engine using convolutional neural

networks (CNNs). It was trained using 20.000 games 8 x 8 x

6 images that have an ELO rating above 2000.

The architecture of this corresponds to the width and

height of the board and the six unique pieces that are denoted

with +1 and -1, white and black pieces, respectively. The

network consists of two parts: the move selector and the piece

selector. 26 games out of 100 games were drawn, and lost the

rest when it was faced with the Sunfish chess engine. The

author claimed that CNNs are useful in pattern recognition of

small tactics.

Muhammad Faiz Arsalan & Haryono Soeparno / IJETT, 72(4), 43-50, 2024

45

In a similar manner [17], bitmap input was used to

represent the chess board. The neural network that used the

bitmap input has better results than using the algebraic input.

In another paper [16], an 8 x 8 x 12 arrays are also used as the

input of a recurring neural network. An 8 x 8 mask of the target

and origin position of a chess piece is utilized as the output of

the network.

CWU-Chess [15] used a different approach – using hand-

crafted features as the input of the neural network. 10 distinct

features were chosen: bishop pair, double pawns, numerical

advantage, isolated pawns, pawns advance, passed pawns,

mobility, defensive coordination, center control, and king

safety. Genetic algorithm was chosen instead of the traditional

CNNs. The chess engine can play the games within the first 4

generations.

[13] researched a similar game with Chess, Hex. The

authors show that a compact representation utilizing the most

common bridge pattern can achieve reasonable accuracy. The

neural network is integrated with Monte Carlo tree search to

enhance performance. Challenges include imperfect training

data and the non-trivial combination of neural nets and search.

The best accuracy achieved on test data is 54.8%. In addition,

the paper shows that the neural network can achieve

reasonable playing strength without the need for a search

function, which is a significant advantage over traditional

methods.

Go is another game that is often used to train deep

learning models. A research paper [20] used an ensemble of

CNNs as their deep learning architecture. The model was able

to predict 36.9% of the expert moves. In a more recent paper

[19], instead of ensemble methods, CNNs are used to train.

The model can accurately predict 55% of the positions.

Furthermore, it beats GnuGo (a search-based program) in 97%

of games played.

Lastly, [14] Chess2vec is an innovative approach that

converts chess pieces into vectors for move prediction and

analysis. Using the matrix representation with position-

dependant piece vectors, a multiclass test was conducted that

accurately predicts 8.8% of the moves of Stockfish. These

diverse approaches collectively contribute to the ongoing

evolution of AI in the realm of chess, offering insights and

advancements that continue to shape the field.

3. Data and Methods
This paper aims to develop a model that can determine the

optimal chess moves from board positions. The proposed

solution uses a novel framework namely the move-to-delta

framework with chessboard positions that is integrated into a

deep learning model. The deep learning model is trained using

seed initialization and a single hyperparameter tuning which

is the utilization of four different batch sizes (64, 128, 256,

and 512). Callbacks are utilized to aid with the training

process. EarlyStopping to stop the training process early based

on the improvement of the metric that is used,

ReduceLROnPlateau to reduce the learning rate on metric that

plateaus and ModelCheckpoint to save the best model.

The training process starts with collecting and preparing

the dataset. Utilizing the dataset, it is converted into the inputs

for the model: tensor to represent the state of the chessboard

and evaluation of the chessboard converted using the move-

to-delta framework. After that, the dataset is split into training

and validation datasets with an 80:20 ratio, respectively. The

training process is divided into four based on the number of

batch sizes. Each of those batch sizes trains the model by

utilizing seeds ranging from 1 to 100. Each seed is trained

using the Adam optimizer and 100 epochs outputting in a total

of 400 different models.

3.1. Software

To realize this solution, a software environment must be

used. The main programming language that is used is Python.

Utilizing the various available packages, a few were chosen:

pickle, which is a file type to store the converted dataset,

TensorFlow which is a Python package to help create deep

learning models, NumPy which is a Python package that

contains a lot of mathematical functions, scikit-learn to help

with the preprocessing, and lastly, python-chess which aids

with any chess related problems.

3.2. Dataset Preparation

Initially, the dataset is acquired in Portable Game

Notation (PGN) format, which includes chess games with

move sequences and outcomes. The dataset is sourced from

the Lichess database website, which houses 4 billion standard-

rated games and 3 million puzzles. For this research, we

selected data from “2023-March” and further filtered it only

to include games with the Grandmaster title. The filtered set

contains 3,862 games out of 108,201,825.

3.3. Tensor Construction and Mapping

Subsequently, this PGN data is converted into board

representations using a piece-centric representation type. This

board representation method encompasses piece types, their

colors, and blank spaces. Tensor building involves converting

these board representations into tensors suitable for neural

network processing. This is achieved using a mapping that

translates board pieces into numeric values, forming the input

tensors. At the heart of this process lies the Forsyth–Edwards

Notation (FEN), a standard representation system that

captures the current state of a chess game. A typical FEN

string succinctly represents piece positions, active color,

castling rights, en passant target square, half-move clock, and

full-move number. For instance, the starting position of a

chessboard is represented as

"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w

KQkq - 0 1".

Muhammad Faiz Arsalan & Haryono Soeparno / IJETT, 72(4), 43-50, 2024

46

Fig. 1 Board representation

To transform the FEN notation into tensors, we utilize a

predefined mapping system. Each unique character in the

FEN, representing different chess pieces, is mapped to a

specific numeric value in the range of 1 to 6 (see Figure 1).

The value's sign indicates the piece's color: positive for white

and negative for black. For instance, 'r' (black rook) is mapped

to -5, while 'R' (white rook) is mapped to 5. Empty squares in

FEN, denoted by numbers, are expanded into consecutive

zeroes. So, '4' translates to '0000'. Using this mapping, the

FEN string is then translated into a matrix. In the context of an

8x8 chessboard, this results in an 8x8 tensor. The values in this

tensor, derived from our mapping, serve as inputs for the

neural network.

3.4. Move-to-Delta

Traditional evaluation methods often look at board

positions in isolation, neglecting the fluidity and dynamism of

the game of chess. However, with the "move to delta" concept,

we directly target the outcome of individual moves. This

approach inherently factors in the broader game strategy and

the ever-changing nature of chess battles. At the core of our

training process is a unique labeling approach, termed the

"move to delta" concept. It serves as a pivotal tool in

understanding and quantifying the inherent value and strategic

ramifications of each potential chess move. Here is how it

functions: the model compares the evaluation score of a

chessboard position before a move is made to the score after

its execution (see Figure 2). This differential — the delta —

encapsulates the move's efficacy and becomes the label for our

training data. By training our model using these delta values,

we enable it to grasp not just the intrinsic value of board

positions but also the nuanced implications of each move

within the grand scheme of the game. This gives the neural

network a holistic understanding, sharpening its ability to

recommend moves that could significantly shift the balance of

power in a match.

Fig. 2 Move-to-Delta

3.5. Evaluation Methods

After the training process, it is important to evaluate the

models. The models will be evaluated in two methods:

subjected to 28 chess puzzles and performance metrics. To

adapt to real-world application and reliability, the model is

subjected to 25 Kaufman tests, Plaskett’s puzzle, and the two

most common checkmate patterns: the Fool’s mate and the

Scholar’s mate. Each of the puzzles is paired with the best

move so that the model’s best move can be compared to the

best move of the puzzle.

In the beginning, the puzzle will be inserted into a search

algorithm that searches all of the possible legal moves. Then,

each of those legal moves is evaluated using the trained model

to output an evaluation score. After that, the best evaluation

score is matched against the best move from the puzzle. The

best model is the model that solved the highest number of

puzzles.

The other evaluation method is to measure the

performance metrics of each of the models. The performance

metrics that are used are Mean Squared Error (MSE), Mean

Absolute Error (MAE), and R-squared (R2). The MSE

measures the average squared difference between the

predicted value and the actual value, whilst the MAE measures

the absolute difference between the predicted and the actual

value formulated in Equations 1 and 2, respectively. R-

squared measures a bit differently (see Equation 3). R-squared

determines whether the model is a good fit or not. Within the

range of 0 to 1, 1 is the best-fitted model, while 0 is the worst-

fitted model.

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1 (1)

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖|

𝑁
𝑖=1 (2)

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)𝑖

2

∑ (𝑦𝑖−�̅�)𝑖
2 (3)

3.6. Model Architecture

A Convolutional Neural Network (CNN) is structured for

the interpretation of 8x8 grid representations, a format that

corresponds with the dimensions of a chessboard (see Figure

3). The network commences with an input layer to accept the

predefined shape of the data. It integrates two convolutional

layers with Rectified Linear Unit (ReLU) activations,

interposed with a max pooling layer for the abstraction of data

and a dropout layer to reduce overfitting risks.

A flattening layer transitions the network from two-

dimensional feature maps to a one-dimensional vector. This

vector feeds into a dense layer with ReLU activation for

nonlinear transformation, followed by another dropout layer

for regularization. The architecture concludes with a dense

output layer, which serves to evaluate the positional strength

of the chessboard which outputs an evaluation score.

Muhammad Faiz Arsalan & Haryono Soeparno / IJETT, 72(4), 43-50, 2024

47

Fig. 3 Model architecture

4. Results and Discussion
Since the model is subjected to two methods of evaluation,

the results are divided into three, with the discussion session

after the first two results from the two evaluation methods.

The first section consists of the results from the models that

are subjected to 28 different puzzles. The second section

consists of the performance metrics from the trained models.

Lastly, the last section contains a discussion of both methods

and additional observations.

4.1. 28 Puzzles Result

After the model is trained, all of the models are subjected

to 28 puzzles with the goal of finding the model that has the

highest number of puzzles solved. Figure 4 illustrates the total

correct positions for each of the seed numbers for each batch

size. The seed numbers are on the x-axis, while the total

correct positions lie on the y-axis. Each seed number consists

of 4 colored bars representing the batch sizes – the colors blue,

orange, green, and red representing batch sizes 64, 128, 256,

and 512, respectively. Next, Figure 5 illustrates the frequency

of each position. The puzzle number is fitted on the x-axis,

while the total correct positions are on the y-axis. Not all of

the seed numbers yielded results; hence, the seed numbers do

not have the full range from 1 to 100 illustrated in Figure 4.

Furthermore, not all batch sizes within a seed number yield

results. Only a few seed numbers that have all of the batch

sizes solved at least 1 puzzle. Lastly, two models solved the

highest number of puzzles: seed number 33 with a batch size

of 128 and seed number 65 with a batch size of 64. Each of

those models is able to solve 4 different puzzles. Both models

are able to solve puzzle number 18, with puzzle number 20,

22, and 24 solved by the first model and puzzle numbers 9, 11,

and 21 by the second model. 14 puzzles out of 28 puzzles were

solved by various seed numbers illustrated in Figure 5. It

consists of 12 Kaufman puzzles, the Fool’s Mate, and the

Plaskett’s Puzzle. Not all positions are present on all of the

batch sizes. Position 5 and 22 are not present on batch sizes

128 and 512, position 23 is only present on batch size 128, and

puzzle 28 is only present on batch size 64. The highest

frequency of the number of puzzles solved is puzzle number

18, especially on the batch size of 128. The puzzle numbers

that are present are 5, 9, 11, 16, 18, 19, 20, 21, 22, 23, 24, 25,

26, and 28.

4.2. Performance Metrics

The performance metrics revealed an interesting

observation. Using Table 1, the model is measured using

MSE, MAE, and R-squared. It is evident that within the batch

size of 64, the best model lies in seed number 91, with the

lowest MSE and MAE and the highest R-squared. This pattern

is also observed within the batch size of 256 where the lowest

MSE and MAE, and the highest R-squared are in a single seed

number, in this case, seed number 23 with the metrics of

164.352, 9.56, and 0.1343, respectively. This pattern breaks

on the other two batch sizes where no seed number dominates

the performance metrics. It is also evident that there is another

pattern that is present. All of the batch sizes except for batch

size 64 have seeds that have both the lowest MSE and the

highest R-squared. Batch size 128 with seed number 80, batch

size 256 with seed number 256, and batch size 512 with seed

number 13. Further observations revealed that there is yet

another pattern where the seed number has the highest MSE

and MAE and the lowest R-squared on their respective batch

sizes. This can be observed in batch size 64 with seed number

44, batch size 128 with seed number 21, and batch size 256

with seed number 28.

Input_1

Input Layer

Input:

Output:

[(None, 8, 8, 1)]

[(None, 8, 8, 1)]

conv2d

Conv2D

Input:

Output:

 (None, 8, 8, 1)

(None, 6, 6, 32)

max_pooling2d

MaxPooling2D

Input:

Output:

(None, 6, 6, 32)

(None, 3, 3, 32)

dropout

Dropout

Input:

Output:

(None, 6, 6, 32)

(None, 3, 3, 32)

conv2d_1

Conv2D

Input:

Output:

 (None, 3, 3, 32)

(None, 1, 1, 64)

flatten

Flatten

Input:

Output:

 (None, 1, 1, 64)

(None, 64)

dense

Dense

Input:

Output:

 (None, 64)

(None, 64)

dropout_1

Dropout

Input:

Output:

 (None, 64)

 (None, 64)

dense_1

Dense

Input:

Output:

 (None, 64)

(None, 1)

Muhammad Faiz Arsalan & Haryono Soeparno / IJETT, 72(4), 43-50, 2024

48

Fig. 4 Total Correct Positions for Each Batch Size for Each Seed

Fig. 5 Frequency for Each Position Number for Each Batch Size

Muhammad Faiz Arsalan & Haryono Soeparno / IJETT, 72(4), 43-50, 2024

49

Table 1. Performance metrics

Batch Size

MSE MAE R2

Min Max Min Max Min Max

Seed Value Seed Value Seed Value Seed Value Seed Value Seed Value

64 91 164.404 44 166.02 91 9.55 44 9.657 44 0.1256 91 0.1340

128 80 153.035 21 161.11 78 9.16 21 9.427 21 0.1514 80 0.1939

256 23 164.352 28 165.69 23 9.56 28 9.649 28 0.1273 23 0.1343

512 13 164.369 99 165.71 47 9.57 28 9.646 99 0.1272 13 0.1342

Table 2. Performance metrics with total positions

Batch Size Seed Total Positions Perf. Metrics

64
44 1 Highest MSE and MAE Lowest R2

91 - Lowest MSE and MAE Highest R2

128

21 1 Highest MSE and MAE Lowest R2

78 - Lowest MAE

80 - Lowest MSE and Highest R2

256
23 1 Lowest MSE and MAE Highest R2

28 - Highest MSE and MAE Lowest R2

512

13 1 Lowest MSE and Highest R2

28 - Highest MAE

47 - Lowest MAE

99 - Highest MSE and Lowest R2

Table 3. Best models

Seed Number Batch Size MSE MAE R2 Total Position

65 64 165.064 9.589 0.131 4

33 128 156.667 9.291 0.175 4

4.3. Discussion

Determining the best model is based on the two methods

that have been analyzed. The ideal model can solve several

puzzles and has a good performance metric.

To begin, Table 2 provides the seeds from the best

performance metrics and subjects them to the puzzles that the

model is able to solve. It is evident that despite the good

performance metrics, almost all of the seeds cannot solve one

out of the 28 puzzles, with a few exceptions being seed

number 44 with batch size 64, seed number 21 with batch size

128, seed number 23 with batch size 256, and seed number 13

with batch size 512.

Out of those 4 seed numbers, two of which have the highest

MSE and lowest R-squared whilst the other two seed numbers

have the exact opposite – lowest MSE and highest R-squared.

It is to be expected that the lowest MSE and MAE with the

highest R-squared has the highest number of puzzles solved

yet the result does not reflect this. Since two models have the

same highest number of number of puzzles solved, the

performance metric can determine which one of the two

models reigns as the champion. Using Table 3, it is evident

that the model with seed number 33 with batch size 128 is the

best based on the lowest MSE and MAE with the highest R-

squared out of the two models with 156.667, 0.291, and 0.175,

respectively.

Therefore, it can be concluded that models cannot be

evaluated solely on performance metrics. It is important to

blend both methods by prioritizing the number of puzzles

solved first and then using performance metrics to determine

the best model.

5. Conclusion
The primary criterion for selecting the best model was its

capability to predict the optimal chess moves. Using an

exhaustive comparison of two evaluation methods that

compared models based on their number of puzzles solved and

using MSE, MAE, and R-squared as the performance metric

across a range of 100 different seeds and four different batch

sizes revealed a clear frontrunner, the model trained using seed

33 with batch size 128. Notably, this model, when tested

against 28 puzzles, managed to successfully solve four out of

the 28 puzzles consisting of 4 Kaufman puzzles (position 18,

20, 22, and 24), which trumps the latest advancement that only

able to solve two positions out of the 25 Kaufman puzzles

(position 3 and 6). Furthermore, the usage of two methods is

better to be used in harmony rather than on its own. It is

important to prioritize the number of puzzles solved first and

then utilize performance metrics as a supplement method. To

conclude this paper, some points can be improved for future

studies, such as increasing the size of the dataset, exploring

other evaluation methods, and exploring other types of games

that are similar to chess.

Muhammad Faiz Arsalan & Haryono Soeparno / IJETT, 72(4), 43-50, 2024

50

References
[1] David Silver et al., “A General Reinforcement Learning Algorithm that Masters Chess, Shogi and Go through Self-Play,” Science, vol.

362, no. 6419, pp. 1140-1144, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[2] Omid E. David, Nathan S. Netanyahu, and Lior Wolf, “DeepChess: End-to-End Deep Neural Network for Automatic Learning in Chess,”

Artificial Neural Networks and Machine Learning-ICANN, 2016: 25th International Conference on Artificial Neural Networks,

Barcelona, Spain, pp. 88-96, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[3] Matthew Lai, “Giraffe: Using Deep Reinforcement Learning to Play Chess,” Arxiv, pp. 1-39, 2015. [CrossRef] [Google Scholar]

[Publisher Link]

[4] Pieter Bijl, and Anh Phi Tiet, “Exploring Modern Chess Engine Architecture,” Bachelor Thesis, Vrije Universiteit Amsterdam, pp. 1-30,

2021. [Google Scholar] [Publisher Link]

[5] Board Representation, Chess Programming Wiki, 2020. [Online]. Available: https://www.chessprogramming.org/Board_Representation

[6] Larry Kaufman, “Rate Your Own Computer,” Computer Chess Reports, vol. 3, no. 1, pp. 1-24, 1992. [Google Scholar] [Publisher Link]

[7] Larry Kaufman, “Rate Your Own Computer – Part II,” Computer Chess Reports, vol. 3, no. 2, pp. 1-23, 1992. [Publisher Link]

[8] Larry Kaufman, “Reprint Problems,” Computer Chess Reports, vol. 4, no. 1, pp. 1-31, 1993. [Publisher Link]

[9] Matthia Sabatelli et al., “Learning to Evaluate Chess Positions with Deep Neural Networks and Limited Lookahead,” Proceedings of the

7th International Conference on Pattern Recognition Applications and Methods ICPRAM, Funchal, Madeira, Portugal, vol. 1, pp. 276-

283, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[10] Arman Maesumi, “Playing Chess with Limited Look Ahead,” Arxiv, pp. 1-11, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[11] Fenil Mehta et al., “Predicting Chess Moves with Multilayer Perceptron and Limited Lookahead,” Journal of Engineering Research and

Application, vol. 10, no. 4, pp. 5-8, 2020. [Google Scholar] [Publisher Link]

[12] Barak Oshri, and Nishith Khandwala, “Predicting Moves in Chess Using Convolutional Neural Networks,” ConvChess, pp. 1-8, 2016.

[Google Scholar] [Publisher Link]

[13] Chao Gao, Ryan Hayward, and Martin Müller, “Move Prediction Using Deep Convolutional Neural Networks in Hex,” IEEE

Transactions on Games, vol. 10, no. 4, pp. 336-343, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[14] Berk Kapicioglu et al., “Chess2vec: Learning Vector Representations for Chess,” Arxiv, pp. 1-5, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[15] Joseph Lemley et al., “CWU-Chess: An Adaptive Chess Program that Improves After Each Game,” 2018 IEEE Games, Entertainment,

Media Conference (GEM), Galway, Ireland, pp. 1-9, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[16] Avi Schwarzschild et al., “Can you Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks,” Advances

in Neural Information Processing Systems, vol. 34, pp. 6695-6706, 2021. [Google Scholar] [Publisher Link]

[17] Rafał Dreżewski, and Grzegorz Wątor, “Chess as Sequential Data in a Chess Match Outcome Prediction Using Deep Learning with

Various Chessboard Representations,” Procedia Computer Science, vol. 192, pp. 1760-1769, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[18] Zheyuan Fan, Yuming Kuang, and Xiaolin Lin, “Chess Game Result Prediction System,” Stanford University, CS 229 Machine Learning

Project Report, pp. 1-5, 2013. [Google Scholar]

[19] Chris J. Maddison et al., “Move Evaluation in Go Using Deep Convolutional Neural Networks,” Arxiv, pp. 1-8, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[20] Ilya Sutskever, and Vinod Nair, “Mimicking Go Experts with Convolutional Neural Networks,” Artificial Neural Networks-ICANN, 18th

International Conference, Prague, Czech Republic, Proceedings, Part II, pp. 101-11, 2008. [CrossRef] [Google Scholar] [Publisher

Link]

https://doi.org/10.1126/science.aar6404
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+general+reinforcement+learning+algorithm+that+masters+chess%2C+shogi+and+Go+through+self-play&btnG=
https://www.science.org/doi/abs/10.1126/science.aar6404
https://doi.org/10.1007/978-3-319-44781-0_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deepchess%3A+End-to-end+deep+neural+network+for+automatic+learning+in+chess&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-44781-0_11
https://doi.org/10.48550/arXiv.1509.01549
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Giraffe%3A+Using+deep+reinforcement+learning+to+play+chess&btnG=
https://arxiv.org/abs/1509.01549
https://scholar.google.com/scholar?q=Exploring+Modern+Chess+Engine+Architecture&hl=en&as_sdt=0,5
https://www.cs.vu.nl/~wanf/theses/bijl-tiet-bscthesis.pdf
https://www.chessprogramming.org/Board_Representation
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=L.+Kaufman%2C+Rate+Your+Own+Computer%2C&btnG=
http://www.chesscomputeruk.com/html/computer_chess_reports.html
http://www.chesscomputeruk.com/html/computer_chess_reports.html
http://www.chesscomputeruk.com/html/computer_chess_reports.html
https://doi.org/10.5220/0006535502760283
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+to+Evaluate+Chess+Positions+with+Deep+Neural+Networks+and+Limited+Lookahead&btnG=
https://www.scitepress.org/Link.aspx?doi=10.5220/0006535502760283
https://doi.org/10.48550/arXiv.2007.02130
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Playing+Chess+with+Limited+Look+Ahead&btnG=
https://arxiv.org/abs/2007.02130
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+Chess+Moves+with+Multilayer+Perceptron+and+Limited+Lookahead&btnG=
https://www.ijera.com/pages/v10no4.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+Moves+in+Chess+using+Convolutional+Neural+Networks&btnG=
http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/ConvChess.pdf
https://doi.org/10.1109/TG.2017.2785042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Move+Prediction+using+Deep+Convolutional+Neural+Networks+in+Hex&btnG=
https://ieeexplore.ieee.org/abstract/document/8226781
https://doi.org/10.48550/arXiv.2011.01014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=Predicting+Moves+in+Chess+using+Convolutional+Neural+Networks&q=Chess2vec%3A+Learning+Vector+Representations+for+Chess&btnG=
https://arxiv.org/abs/2011.01014
https://doi.org/10.1109/GEM.2018.8516537
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CWU-Chess%3A+An+Adaptive+Chess+Program+that+Improves+After+Each+Game&btnG=
https://ieeexplore.ieee.org/abstract/document/8516537
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Can+You+Learn+an+Algorithm%3F+Generalizing+from+Easy+to+Hard+Problems+with+Recurrent+Networks&btnG=
https://proceedings.neurips.cc/paper_files/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html
https://doi.org/10.1016/j.procs.2021.08.180
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Chess+as+Sequential+Data+in+a+Chess+Match+Outcome+Prediction+Using+Deep+Learning+with+Various+Chessboard+Representations&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050921016756
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Chess+Game+Result+Prediction+System&btnG=
https://doi.org/10.48550/arXiv.1412.6564
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MOVE+EVALUATION+IN+GO+USING+DEEP+CONVOLUTIONAL+NEURAL+NETWORKS&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MOVE+EVALUATION+IN+GO+USING+DEEP+CONVOLUTIONAL+NEURAL+NETWORKS&btnG=
https://arxiv.org/abs/1412.6564
https://doi.org/10.1007/978-3-540-87559-8_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mimicking+Go+Experts+with+Convolutional+Neural+Networks&btnG=#d=gs_cit&t=1700117370552&u=%2Fscholar%3Fq%3Dinfo%3APGEhdXKgq-MJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://link.springer.com/chapter/10.1007/978-3-540-87559-8_11
https://link.springer.com/chapter/10.1007/978-3-540-87559-8_11

