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Abstract - As the number of houses is increasing worldwide there is a growing challenge of trusses failure. Trusses made of 

wood provide tiles with leverage to exert more weight on the truss itself and cause the roof to deform and collapse in due time 

gradually. This review paper discusses the effectiveness of the different types of roof trusses in use. This paper reviews the 

mechanical properties of timber trusses, steel trusses, concrete trusses, composite trusses, and plastic trusses, and possible 

solutions to eliminate the failure of trusses are discussed. Steel trusses are more enduring than timber trusses; even so, steel 

trusses are more expensive than any other type. In addition, steel trusses are more susceptible to corrosion and rusting than 

any other type. Furthermore, steel is a good conductor, posing hazards of electrical shock to any human in contact. 

Developments have been made for concrete trusses; however, concrete remains a challenge since it has low tensile strength, 

allowing chipping and cracking. Plastic trusses have been in use; however, plastic trusses have limited strength and lifespan 

compared to wood, steel, and concrete, resulting in limited use in larger structures. However, the utilization of fiberglass and 

epoxy has been introduced to replace the trusses in use since they have a high strength-to ratio, which means they can support 

heavy loads without adding any weight to the structure. Ultimately there is still a need for further research to come up with 

optimized composite trusses that can have enhanced mechanical properties, resistance to termites, and moisture. 
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1. Introduction 
A Truss is a structure consisting of numerous members 

interconnected together at their ends so they configure a firm 

body [1]. They are commonly used to reach substantial 

distances and to bear sizeable loads that can be effectively 

done by a columnar single beam [2]. Trusses are frequently 

used to create bridges and support roofs. Essentially, roof 

trusses are a triangulated system, as shown in Figure 1, 

typically consisting of straight structural elements 

interconnected together [3].  

In roof trusses, elongation and shortening of members of 

the truss cause a bending action, which further results in 

deflection [4]. The bending of the truss is quite a noticeable 

firm bending of the beam. To reduce excessive deflection, a 

sag-tie member is installed to support the long horizontal 

member at the bottom chord of a truss that is normally in 

tension [5] [3]. The members of the trusses are classified as 

main members and secondary members [6]. Wood trusses are 

widely used; however, these trusses are limited by the 

mechanical properties of wood, as shown in Table 1 [7]. 

Furthermore, wood tends to absorb moisture, which weakens 

the truss. Wood is also susceptible to termite attack which can 

result in its premature failure [8]. The chemical composition 

of wood is organic, containing mainly hydrogen and carbon, 

which are combustible, posing a fire hazard [9]. 

Table 1. Depicts mechanical comparisons between wood, steel and 

concrete [7] 

Material E/GPa 𝝁 𝜶/𝟏𝟎−𝟓℃−𝟏 

Concrete 30.0 0.2 1.0 

Steel 210.0 0.3 1.2 

Wood 10.0 0.1 0.8 

 

 
Fig. 1 Layout of a truss [1] 
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Concrete trusses have found some use due to their high 

compressional strength and resistance to fire and water 

absorption. However, concrete has a very low tensile 

strength, which results in it forming a weaker truss that is 

susceptible to damage. The low tensile strength serves as a 

limitation in the weight that the concrete truss can support 

[10]. Steel trusses are dominating the industry due to their 

durability and ability to sustain heavier loads. However, steel 

is expensive and also requires more skilled labour to machine 

it appropriately [11]. Steel is affected by temperature 

differentials, and it is a conductor of electricity, which can 

pose a hazard. Furthermore, steel tends to corrode if not 

treated accordingly [2]. Plastic trusses have found some 

limited market share. Plastic trusses have limited strength and 

lifespan compared to wood, steel, and concrete, resulting in 

limited use in larger structures. Furthermore, plastic trusses 

are generally not fire-resistant, which can pose a fire risk to 

the building [4].   

2. Types of Trusses 
The roof trusses that are used in the construction industry 

are mainly wood trusses, steel trusses, concrete trusses, 

plastic trusses, and composite trusses. The failure 

mechanisms of trusses and their mechanical are reviewed in 

the successive subsections. 

2.1. Wood Trusses  

Wooden trusses have been considered effective and cost-

efficient in the construction industry. However, wooden 

trusses tend to absorb moisture. Moisture has a negative 

effect on the wood properties. Moisture causes the wood to 

swell and then shrink when it dries out, affecting its 

durability. Furthermore, wood has very low resistance to 

insects and fungal decay [12]. Moisture contributes over time 

to softening the wood, causing it to have reduced mechanical 

properties and be susceptible to fungus attack [13]. To 

increase the resistance of wood to fungi attack it is necessary 

to use chemicals to treat it. However, these chemicals are 

costly and not environmentally friendly [3]. 

 
Fig. 2 Termite attack 

Wood trusses tend to harbour termites which feed on the 

wood from the inside out, which can cause undetectable 

damage on the trusses until it is extensively damaged, as 

shown in Figure 2 [14]. When termite damage is visible the 

damage will generally already be extensive [15] [12]. The 

properties of wooden trusses, which include thermal, 

electrical, and mechanical properties, make them useful for 

trusses [16].  

2.2. Steel Trusses 

Steel is a versatile material enabling it to be easily 

fabricated into various shapes and geometries. However, 

steel tends to corrode easily [17]. Steel trusses have the 

advantage of resistance to heat over wooden trusses, which 

are easily combustible, as shown in Table 2 [18]. It takes 

much higher temperatures to compromise the integrity of 

steel trusses making these trusses safer than with the ones 

made of wood since they are deemed to be fire resistant [19]. 

Furthermore, steel has a good high strength-to-weight 

ratio, enabling it to be ideal for large buildings requiring 

trusses [20]. Deflection of trusses is a huge challenge that 

most researchers have encountered, as shown in Figure 3.  

However, steel can make a very durable and safe roof framing 

or truss without weighing down the structures [21]. 

Table 2. Shows the comparison of thermal conductivity between steel 

and other materials 

Material 
Thermal conductivity 

(W/Mk) 

Aluminum 214 

Steel (carbon 1%) 43 

Concrete, dense 1.3 

Bricks 0.73 

Water (20℃) 0.60 

Sand (Dry) 0.30 

Wood (oak) 0.17 

Glass fiber quilt 0.035 

Air 0.024 

 
Fig. 3 Steel truss failure [5] 
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A big disadvantage of steel is that steel needs to be 

corrosion-protected by either galvanizing it or coating it [22]. 

The galvanizing of the steel can be effective, but it has been 

shown that if the coating is scratched, the steel becomes 

exposed and becomes susceptible to corrosion  [23]. Steel is 

a very good electrical conductor, with trusses made of steel 

posing an electrical risk due to the possibility of conducting 

electricity, as shown in [24]. Lastly steel trusses are generally 

more expensive compared to other trusses  [26]. 

2.3. Concrete Trusses 

Concrete has also not been a viable alternative for roof 

truss applications as a result of the complexity of concrete 

components construction and its heavy weight [27]. 

However, some of the disadvantages of structural steel roof 

truss systems, such as susceptibility to corrosion, high 

maintenance cost, and the rising prices of steel [28], can be 

overcome by the use of concrete trusses [29].  

However, the heavy weight of concrete trusses is a 

hindrance to their wide application [30]. Furthermore, when 

concrete cracks or chips, as shown in Figure 4, it tends to lose 

its strength and compromise the structural integrity of the 

truss [31]. Concrete has a very low tensile strength compared 

to compressive strength, as shown in Table 3. 

3. Polycarbonate Plastic Trusses  
Polycarbonate plastic is a very common material that is 

now widely used in the construction industry. Plastic tends to 

be light in weight and has low density [34]. However, 

polycarbonate plastic is composed of polymer chemicals 

which are non-biodegradable [35]. 

Polycarbonate plastic degrades its mechanical strength 

under the action of direct sunlight and is flammable unless 

treated [36]. In the design of trusses, their reaction to 

temperature is an important parameter [37]. With sufficiently 

high temperatures, plastic trusses tend to soften, which can 

lead to failure of the plastic truss [38]. 

Other researchers have attempted to design trusses using 

polycarbonate plastics since it has low production cost, 

resistance to corrosion, are lightweight, and, most 

importantly, are a poor conductor of heat and electricity [34].  

However, plastic trusses have limited strength and lifespan 

compared to wood, steel, and concrete, resulting in limited 

use in larger structures. Furthermore, polycarbonate plastic 

trusses are non-resistant to fire, which can increase the risks 

of fire damage in a building [2]. Researchers have attempted 

to create various hybrid composite materials with plastics, 

steel, and concrete materials with marginal success [40].  

Polycarbonate plastic trusses are susceptible to fire unless 

treated, which tends to lower their modulus of elasticity, 

making them highly unsuitable for load-bearing 

applications[41]. 

Table 3. Shows the mechanical properties of concrete [32] [33] 

Properties Values 

Compressive strength 31.2 MPa 

Density 2400 kg/m3 

Modulus of elasticity 26.3 GPa 

Poisson’s ratio 0.2 

Tensile strength 2.07 MPa 

Fracture energy/ unit area 73.6 N/m 

Strain at peak compressive stress 0.0022 

Table 4.  Properties of polycarbonate plastic material [42] 

Properties Values 

Density 1200 kg/m3 

Modulus of elasticity 2.3 GPa 

Tensile strength 68 MPa 

Elongation 130 

Poisson ratio 0.35% 

Stress-optical constant 7 N/mm/fringe 

 
Fig. 4 Cracks on concrete structure  

Polycarbonate plastic tends to undergo plastic 

deformation over time, which lowers its durability compared 

to metal, wood, and or concrete trusses. The workability of 

plastic is also a challenge compared to other materials. It is 

harder to screw, nail, and drill plastic compared to wood [43]. 

However, most of these structural constraints can be 

overcome by mixing other materials with plastics to form 

composite building materials [44]. 

4. Composite Trusses 
Composite materials are manipulated or natural 

materials developed from two or more materials[45]. 

Composites are the most considered advanced materials for 

hybrid applications. [46] Composite materials are classified 

as polymer matrix composite, ceramic matrix composite, and 

metal matrix composite [47]. In the design of composite roof 

trusses, polymer matrix composite materials are utilized, 

which are inclusive of Carbon fiber composites[48]. Carbon 

Fiber composites are exceptionally strong and lightweight 

but extremely costly to produce due to the requirement of 

advanced technical equipment, as discussed in Figure 5 [49]. 
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Fig. 5 Stress vs. strain graph showing the behavior comparisons 

between different materials 

Table 5. Properties of Glass Fiber Reinforced Polymer and Carbon 

Fiber Reinforced Polymer [53]. 

Properties GFRP CFRP 

Longitudinal elastic modulus, E1 7 GPa 17.5 GPa 

Transverse elastic modulus, E2 7 GPa 17.5 GPa 

Thickness elastic modulus, E3 1 GPa 5 GPa 

In-plane Poisson’s ratio, 𝑣12 0.22 0.24 

Thickness Poisson’s ratio, 𝑣13, 𝑣23 0.22 0.24 

In-plane shear modulus, G12 1 GPa 2 GPa 

Thickness shear modulus, G13 2.5 GPa 10.5 GPa 

Tensile strength, 𝜎𝑢𝑡 138.1 MPa 262.6MPa 

Table 6. Durability and reasons for failure of trusses 

Types of trusses Life span Causes of failure Reference 

Wood trusses Over 30 years Termite attack, fire, and moisture [55] 

Steel trusses 50 years Fatigue and corrosion failure [56][57][58] 

Concrete trusses 50 years Cracking [29][59] 

Plastic trusses 20 years Humidity [35][60] 

Composite materials have high strength, enabling them 

to support heavy loads while remaining lightweight [51]. 

Composite material comprises stiffness properties, 

durability, and high corrosion resistance when compared with 

bulk materials, allowing for a weight reduction in the trusses 

[52]. The properties of the most common composites are 

discussed above: Nevertheless, carbon fiber composites also 

come with limitations of high costs to manufacture and 

repair, brittleness, and recycling challenges. [54] 
 

5. Conclusion 
Due to the heaviness of the tiles used for roofing 

purposes, the trusses experience stress, which leads to the 

whole truss being gradually deformed, resulting in unsafe 

buildings. Therefore, it is very important to safely design and 

simulate the roofing trusses to ensure they are durable and 

can withstand normal operational forces.Timber trusses have 

been widely used; however, timber trusses are sensitive to 

moisture and degrade significantly if wet resulting in the loss 

of structural strength whilst subjected to termites’ attack. In 

addition, timber is lightweight, causing a direct advantage of 

more sensitivity to lateral loads. Steel trusses are more 

enduring than timber trusses; even so, steel trusses are more 

expensive than any other type. In addition, steel trusses are 

more susceptible to corrosion and rusting than any other type. 

Steel is a good conductor, posing hazards of electrical shock 

to any human touching it. Concrete trusses are marginally 

used due to their low tensile strength allowing chipping and 

cracking. Plastic trusses have also found some limited use; 

however, plastic trusses have limited strength and lifespan 

compared to wood, steel, and concrete, resulting in limited 

use in larger structures. Furthermore, plastic trusses are non-

resistant to fire, which can increase the risks of fire damage 

in a building.  
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