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Abstract - A smart grid is an electrical power system that uses modern digital technologies and automation to improve reliability, 

efficiency, and sustainability. However, the integration of these technologies can increase the risk of power quality (PQ) 

disturbances, which can damage electrical devices and cause significant economic losses. Conventional protection schemes in 

smart grids typically provide a reactive approach to detecting PQ disturbances. This is not sufficient to address the root cause 

of these distortions, and thus, advanced protection schemes that incorporate predictive measures are needed.  Hence it will be 

essential to proactively detect the occurrence of power quality disturbances and implement preventive measures to mitigate their 

impact. Traditional forecasting methods often rely on simple models and assumptions, which can lead to inaccuracies and 

limitations in the predictions. This paper proposes an advanced model for the early detection of PQ disturbances by utilizing 

the power of artificial intelligence and machine learning. This paper utilizes a state-of-the-art encoder-decoder model for 

forecasting Power Quality (PQ) disturbances, accompanied by the implementation of a hybrid Convolutional Neural Network-

Long Short-Term Memory model to categorize these disorders effectively. By accurately detecting the disturbances in advance, 

appropriate mitigation measures can be considered to minimize their effect on the system. Several experiments are conducted 

to find the optimum model with proper network configurations that detect the PQ disorders. The effectiveness of the proposed 

model is confirmed through testing with over 18 different classes of simple and mixed distortions. The study further explores the 

potential of a unified model capable of detecting and classifying multiple disturbances based on forecasted data points. 

Keywords - Power grid, Power quality disturbances, Forecasting, Convolutional Neural Network, Long-Short Term Memory, 

Early detection.     

1. Introduction  
The shift from conventional power grids to contemporary 

decentralized smart grids, accompanied by smart 

technologies, brings additional hurdles in ensuring a reliable 

power supply. Due to the distributed nature and intermittent 

power generation of renewable energy sources incorporated 

into the grid poses additional challenges to the electric grid. 

Moreover, nonlinear loads, load fluctuations, the presence of 

power electronic devices, and external environmental features 

contribute to various power quality (PQ) issues [1]. Enhancing 

the power supply quality offers numerous benefits, including 

improved energy efficiency, minimized energy wastages, 

reduced power disruptions, minimized equipment failures, 

and increased end-user satisfaction. Taking proactive 

measures to forecast and monitor power quality events will 

significantly enhance the reliability of the power grid. This 

will help to reduce the risk of power outages and thus improve 

the life of end-user equipment. Furthermore, by mitigating the 

PQ distortions, the stability and safety of the entire system can 

be highlighted. Therefore, early detection of power quality 

distortions plays a paramount role in improving the efficacy, 

stability, security, and sustainability of the electrical grid. 

Detection of PQ disturbances involves classifying them into 

distinct categories, which include voltage sags, swells, 

transients, flickers, interruptions, etc. 

This classification is done based on the electrical 

attributes of PQ distortions and their impact. By categorizing 

power quality events, it becomes possible to identify their root 

causes and select suitable mitigation strategies to safeguard 

sensitive equipment from their effects. The integration of 

power quality monitoring systems with precise detection 

methods can contribute to diminishing the frequency and 

duration of PQ incidents. Statistical analysis techniques like 

Principal Component Analysis (PCA) are widely used to 

reduce the dimensionality of complex power quality signals 
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while preserving their essential information [3]. Even though 

the statistical models improve the detection accuracy, they 

often work by holding a linear relationship among the data. 

However, this assumption might not always align with the 

complexities and non-linear nature of PQ events. Another 

disadvantage of statistical models is the requirement of a huge 

amount of data to recognize the underlying patterns of PQ 

signals effectively.  

A mathematical approach designed to address the 

uncertainty in the data is fuzzy logic [4].  In the context of PQ 

classification, fuzzy logic can be effectively employed to 

tackle the intricate and non-linear attributes inherent in power 

data. However, the inherent complexity of fuzzy models 

increases the associated computational cost. Support Vector 

Machine (SVM) based methodologies are extensively 

employed in the classification of PQ events according to their 

electrical attributes. This is achieved by mapping the data into 

a feature space of higher dimensions [5]. The selection of 

appropriate feature parameters is important to achieve an 

accurate classification using SVM models. The time and 

computational complexity of SVM models is high compared 

with other non-linear models for PQ detection. 

Rule-based methods are extensively utilized in PQ 

detection. These methods leverage the expertise of domain 

specialists and practical data to establish a predefined set of 

rules that aid in categorizing different PQ events [6]. 

Appropriate feature extraction and decision logic are also 

involved in rule-based PQ classification models. Artificial 

Neural Networks (ANNs) have emerged as prevailing 

techniques for pattern recognition and classification in various 

domains, including PQ. ANNs are capable of learning 

complex relationships within data and can be used for the 

accurate categorization of PQ distortions [7].   

The accuracy and effectiveness of ANN models heavily 

depend on the quality of the selected features. Thus the 

selection of the right feature is a critical step in building a 

robust and accurate ANN model. An Extreme Learning 

Machine (ELM) model combined with optimization 

techniques is presented for PQ detection in [8]. In this hybrid 

approach, optimization theory is used to enhance the 

performance of the ELM model. Selecting the appropriate 

optimization technique and its parameters is a tough task for 

real-time PQ detection. Deep-learning-based techniques have 

gained significant attention in the field of PQ analysis [9, 10]. 

Convolution Neural Networks (CNN) are well-suited for PQ 

distortion analysis due to their ability to extract relevant 

features from the data [11]. CNN model combined with 

wavelet features are exploited for PQ events detection in [12]. 

The CNN model utilises the extracted wavelet transform 

coefficients as input to improve classification accuracy. 

However, categorizing the PQ disturbance is insufficient 

for its rectification. To enhance the rectification process, it is 

crucial to include how the PQ signal may change in the near 

future. The potential influence of load fluctuations results in 

the amplification of voltage waveforms and this can be 

avoided by predicting the power signal amplitude.  

Forecasting enables the identification of potential power loads 

that could give rise to specific power quality issues prior to 

their connection to the electric power grid. This information is 

important for power system operators to make proactive 

decisions and take preventive actions to maintain the quality 

supply of power. By forecasting the potential disturbances, 

utilities can take preventive measures to mitigate their impact. 

This proactive approach can prevent PQ events from 

occurring in the first place and helps to avoid equipment 

failures. Another advantage associated with disturbance 

forecasting is the better allocation of resources. Power system 

operators can allocate manpower and equipment more 

efficiently, especially during periods when disturbances are 

predicted. 

Forecasting can aid in the optimal placement of PQ 

meters and also help to identify the fluctuations in power 

generation due to the integration of renewable energy sources 

like solar and wind.  Both power quality forecasting and 

detection are integral to the development and implementation 

of smart grid technologies. They empower utilities with the 

information and tools needed to maintain a high level of power 

quality optimise operations, and overall performance. 

Traditional methods often rely on simple models and 

assumptions, which can lead to inaccuracies and limitations in 

the predictions and classifications of PQ distortions [13,14]. 

To address the limitations of traditional methods, advanced 

techniques based on artificial intelligence and machine 

learning are being used to improve the accuracy and efficiency 

of PQ forecasting and detection tasks. Motivated by all the 

facts mentioned above, this work proposes a hybrid deep-

learning-based network model for early detection of PQ 

disturbances in smart grid scenarios. The present work makes 

significant contributions in the following areas: 

• Developing an encoder-decoder model for forecasting 

simple and mixed-mode power quality disturbances. 

• Creating a hybrid model that incorporates Convolutional 

Neural Network (CNN) and Long Short-Term Memory 

(LSTM) to classify PQ disturbances. 

• Proposing a unified detection model that enables early 

detection of disturbances. 

The evaluation of the hybrid architectures proposed in 

this study encompasses both simple and multiple PQ 

distortions. The paper's structure is outlined as follows: 

Section II offers an in-depth exploration of the methodology 

proposed for this project. At the same time, Section III delves 

into the key outcomes of the study. Finally, in Section IV, the 

paper concludes by highlighting the future prospects and 

potential directions for further research. 
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Fig. 1 A visual representation of the proposed methodology 

2. Proposed Methodology  
The block diagram in Figure 1 provides a high-level 

overview of the proposed methodology. In the upcoming 

section, a detailed description of each block will be provided, 

outlining their individual roles and functionalities within the 

overall system. 

2.1. Dataset Generation  

Power Quality (PQ) disturbances refer to irregular 

fluctuations that occur when the waveform deviates from its 

expected range. These variations can lead to issues for 

sensitive equipment and have the potential to impact the 

ability of the power system to maintain its equilibrium under 

normal and disturbed conditions. Based on the characteristics, 

these disturbances can be categorized as linear, nonlinear, or 

mixed distortions. Linear PQ disturbances [15, 16] affect the 

magnitude and frequency of the voltage and current 

waveforms but do not cause significant changes in the 

waveform shape. Voltage swell, sag, interruptions, etc, are 

examples of linear disturbances. Non-linear PQ disturbances 

cause significant changes in the waveform shape. Unlike 

linear disturbances, non-linear disturbances can cause 

harmonic distortion, inter-harmonics, and voltage 

fluctuations that can have a significant impact on sensitive 

electronic devices and equipment [17, 18]. Non-linear 

disturbances include power spikes, sub and inter-harmonics, 

transients, notches, and noises. These interruptions can cause 

machine failure and coil combustion when they penetrate the 

electrical system. It is important to properly design and 

manage power systems to minimize the impact of non-linear 

PQ disturbances. Mixed-mode PQ disturbance refers to a 

combination of two or more types of distortions. These 

disturbances can reduce the overall efficiency of the system. 

It is important to identify the cause of mixed-mode 

disturbances and implement mitigation strategies to minimize 

their impact. 

Massive amounts of data are needed for Deep Neural 

Network training. PQD mathematical modeling provides the 

sampled values of 9000 power signals. Using parameter 

equations, 500 samples from each of the 18 power quality 

disturbances are generated. These disturbances range from 

linear to non-linear and simple to mixed mode. As per the 

specified IEEE standards outlined in Table I, the parameter 

range undergoes variations. For instance, disturbances that 

cause high-frequency fluctuations in voltage or current can 

exhibit a frequency interval of 300Hz and 900Hz. To address 

this, signals are generated using 81 sample points at a 

frequency of 1 kHz. However, it is worth noting that the 

maximum frequency supported by the suggested model is 

450Hz. In each equation, parameter A describes the RMS 

voltage within a band of 315 to 320, and parameter α denotes 

the extent of a voltage swell, sag, or interruption. On a pure 

wave, the duration of the disturbance is determined by the step 

function u (t). The frequency and magnitude of the 

disturbance's fluctuation are specified by the parameters nω 

and 𝛼n. The harmonics consist of 3rd, 5th, and 7th harmonic 

components.     

All basic mode disturbances arise from the overlay of one 

waveform onto the original waveform (C1). The magnitude 

of the superimposing waveform for swell has an amplitude 

higher than the nominal value for ‘β’ less than 1. Table I 

displays the waveforms of the six basic mode disturbances 

obtained by varying the appropriate parameters in a similar 

manner. By amalgamating two basic modes, the rest eleven 

mixed mode disturbances are created. For the production of 

the dataset, different combinations are taken into account. The 

simulated waveforms for normal, sag, and swell disturbances 

are shown in Figure 2 and waveforms for harmonics, 

harmonics with sag and swell combinations are shown in 

Figure 3. 

2.2. Data Preprocessing 

PQ signals are generated at a sampling frequency of 1 

kHz. Using IEEE standard equations, 9000 signals are 

produced, each sampled at 81 points. Initially, the dataset is 

partitioned into a training set, referred to as train1, and a test 

set, known as test1, with an 80:20 ratio. Prior to feeding the 

encoder-decoder model, the PCA module transformed the 

dataset, originally comprising 56 dimensions, into primary 

components with five dimensions.  It aims to find the 

principal directions in the data that capture most of the 

variance and represent the underlying structure of the data. 

This is done by transforming the data from the original feature 

space to a new space and capturing the maximum variations 

in the data. This quickens processing while improving the 

performance of the deep learning method.

Dataset Generation Data Preprocessing 

CNN-LSTM Hybrid Detection Model 
Encoder-Decoder based PQ Disturbance 

Forecasting 
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Fig. 2 Representation of normal, sag and swell disturbances 

Fig. 3 Representation of harmonics, harmonics with sag and swell disturbances 

Table 1. Data generation 

Power Quality Disturbance Label Equation Parameters 

Pure wave C 1 A sin (ωt) 2*π*50 radians per second 

Sag C 2 A(1 − α(u(t − t1) − u(t − t2))) si n (ωt) 
0.01 ≤ α ≤ 0.09, 

T ≤ (t2 - t1) ≤ 9T 

Oscillatory Transient C 3 

(𝑡−𝑡1) 

sin(𝜔𝑡) + 𝛽𝑒−   𝑐 

∗ sin(𝜔𝑛(𝑡 − 𝑡1)) ∗ (𝑢(𝑡 − 𝑡2) 

− 𝑢(𝑡 − 𝑡1)) 

0.1 ≤ 𝛽 ≤ 

0.8, 0.5𝑇 ≤ (𝑡2 − 

𝑡1) ≤ 3𝑇, 8𝑚𝑠 ≤ 

𝑟30𝑚𝑠 𝑎𝑛𝑑 300𝐻𝑧 ≤ 

𝑓𝑛 ≤ 900𝐻𝑧 

Swell C 4 A(1 + β(u(t − t1) − u(t − t2))) si n (ωt) 
0.1 ≤ β ≤ 0.8, 

T ≤ (t2 - t1) ≤ 9T 

Interruption C 5 A(1 − ρ(u(t − t1) − u(t − t2))) si n (ωt) 
0.9 ≤ ρ ≤ 1, 

T ≤ (t2 - t1) ≤ 9T 

Flicker C 6 (1 + λ sin (κωt)) * sin (ωt)) 0.1 ≤ λ ≤ 0.2, 5 ≤ κ ≤ 50Hz 

Harmonics C 7 
sin(𝜔𝑡) + ∑ 𝛼𝑛 sin(𝑛𝜔𝑡) 

𝑛=3 

0.05 ≤ a3, a5, a7 ≤ 0.1 

5 and ∑ a 2 = 1 

n 
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2.3. Encoder Decoder-Based PQ Disturbance Forecasting 

Encoder-decoder models are a type of neural network 

architecture mainly explored for machine translation and 

language processing applications. The encoder component 

converts the input sequence into a vector of fixed length, 

while the decoder component transforms this vector back into 

an output sequence. The encoder-decoder blocks are linked 

through a context vector. The encoder processes each token 

in the input sequence. A simple illustration of the encoder-

decoder block is shown in Figure 4. The context vector 

represents a hidden state depiction of the input sequence 

generated by the encoder block. It is then passed into the 

decoder block, which generates the output sequence. The 

context vector effectively summarises the information within 

the input sequence, which the decoder utilises to generate 

output predictions. 

The encoder component is implemented using an LSTM 

network, a kind of Recurrent Neural Network (RNN) that 

usefully apprehends long-term dependencies within 

sequential data by integrating memory cells and gating 

mechanisms. During the encoding process, the LSTM scans 

through the input sequence token by token, updating its 

internal state at each step to capture the semantic meaning of 

the tokens encountered. Likewise, the decoder component 

typically employs an LSTM as well. The decoder takes the 

encoded representation generated by the encoder and 

sequentially generates the output sequence token by token. 

During each step, the decoder makes predictions for the 

subsequent token based on the previously generated tokens 

and the encoded representation provided by the encoder. 

The discarded outputs from the encoder at each time 

step ensure that solely the ultimate hidden state and cell state 

are used to form the context vector. This approach 

guarantees that the context vector encapsulates the complete 

significance of the input sequence. The context vector is 

often initialized with a fixed length vector, such as a zero 

vector or a learned parameter, and is updated as the encoder 

processes the input sequence. An LSTM layer with 100 cells 

is fed with the training set, train1. The network is exhibited 

one sample at a time from the input sequence of 56 samples. 

It gains knowledge of how the steps are related to one 

another and forms an internal representation of these 

connections.  
 

Fig. 4 Representation of encoder-decoder model 

The number of memory cells determines the size of the 

fixed-size vector produced by the model, which, in this case, 

has a length of 100. The output makes use of a single dense 

layer. The output sequence generated in each time step is 

given the same weights using a time-distributed wrapper. 

2.4. Detection of PQD using CNN-LSTM Network 

 The purpose of the detection model is to determine the 

type of disturbance to which the waveform predicted by the 

prediction model belongs. To achieve this, the training dataset 

is selected to include the last 25 samples predicted by the 

model. This dataset is then divided into two sets, train2 and 

test2, employing a stratified split method to ensure an equal 

proportion of each disturbance category within both sets. The 

dimensionality of the data is reduced from 25 to 15 by PCA. 

By doing so, it enables faster computations and produces 

better results for the subsequent deep learning algorithm. 

 The proposed model utilizes two specific architectures for 

disturbance identification: 

• 1D Convolutional Neural Network (CNN) 

• Hybrid Convolutional Neural Network-Long Short Term 

Memory (CNN-LSTM) 

 These architectures are specifically designed to process 

the input data and extract meaningful features for accurate 

disturbance classification. 

2.4.1. Convolutional Neural Network (CNN)  

Convolutional Neural Network (CNN) is primarily 

employed for classification tasks and recognition tasks. It 

has multiple layers that extract highly complex features 

from input data and reduce its dimensionality [2]. The 

convolution layer extracts the features from the input data 

matrix and generates the corresponding feature maps. Stride 

and padding are the hyperparameters used to generate the 

suitable output feature map. Stride is the step size by which 

the filter moves across the input, and stride decides the 

spatial resolution of the feature map. Padding is the addition 

of the zeros around the input before convolution. Padding 

helps to preserve the spatial dimensions of the input and 

controls the output feature map size.  

The choice of stride and padding values can impact the 

performance of the model and can influence on what the 

model learns. The pooling layers down-sample the feature 

map and lower the number of parameters while retaining the 

data. The function of the fully connected layer is to map the 

high-level, abstract features learned by the previous layers 

of the network to the final output. This layer performs a 

linear combination of the input activations, followed by a 

non-linear activation function to produce the required 

output. It is used to make final predictions based on the 

features learned by the previous layers. The weights and bias 

are the learnable parameters used during the training stage 

to reduce final prediction error. A standard CNN structure 

Context Vector 

Input 

Output 

ENCODER DECODER 
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comprises several convolution layers, which are then 

succeeded by one or more pooling layers and fully 

connected layers. The output after convolution can be 

represented as,  

        𝑙𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡 ∗ 𝑘𝑡 ∗ +𝑏𝑡)            (1) 

Where xt is the input vector, tanh is the activation 

function, kt is the weight, and bt is the bias of the 

convolution kernel, respectively. One-dimensional data on 

power quality disturbances are produced using 

mathematical models. As a result, the data is trained using a 

one-dimensional convolutional neural network. In each of 

the two convolutional layers, there are 32 kernels of size 

two. Convolution uses feature maps produced by various 

kernels to extract spatial characteristics from the data. The 

information is maintained after convolution using the same 

padding. Each convolutional layer undergoes an activation 

procedure after the parameters are given weights. This 

describes the non-linearity of the CNN model and hence 

aids in understanding the nonlinear property of the provided 

data.  

The activation function is chosen for its capability to 

expedite the training process. Another benefit of ReLU is 

that the gradient vanishing problem is not present, thereby 

comprehending the non-linear nature inherent in the 

provided data. The addition of the pooling layer reduces the 

network's dimension and consequently its parameters. The 

overfitting issue is resolved, and computation time is 

decreased. The output dense layer employs a softmax 

function to determine the signal's class membership. 

The training process involves two primary phases:  

forward propagation and backward propagation. To 

facilitate the forward propagation phase, the 7200 samples 

extracted from the train2 dataset, along with their 

corresponding labels, are partitioned into 20 batches. Each 

batch consists of 360 samples. These batches are 

sequentially fed into the two CNN layers and pooling layers, 

enabling the processing of the input data in a batch-wise 

fashion. The output is then flattened and passed on to the 

output layer. Initially, the parameters are assigned with 

arbitrary values.   

The loss function, in this case, is the cross-entropy, 

which is computed within the output layer. In the backward 

propagation phase, the main goal is to reduce the loss 

function by modifying parameter values. This involves 

computing derivatives of weights (w) and biases (b) 

concerning the loss function, as determined in the forward 

propagation step. By iterative computing and updating the 

gradients of the weights, the model's parameters are adjusted 

in a way that gradually reduces the loss and enhances the 

overall performance of the network. By employing the 

Adam optimization technique throughout the iteration 

phase, the computational workload is reduced.  

2.4.2. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a type of recurrent 

neural network explicitly engineered to address the challenge 

of the vanishing gradient problem. The performance of 

traditional RNNs decreases as the gap length increases, 

whereas LSTM tackles this problem as it can retain the 

information for a long time. LSTM network has memory cells 

that are responsible for holding information for a long period 

of time. LSTM consists of gate mechanisms, namely input, 

forget, and output gates. 

The gate mechanisms in LSTM help to control the flow 

of information into and out of memory cells. The input gate, 

forget gate and output gate are typically implemented as 

sigmoid activation functions, while the memory cell uses a 

tanh activation function. The forget gate determines the extent 

to which previous information is to be remembered. When the 

forget gate output, represented as ft, is equal to 0, it signifies 

that the specific information is disregarded or omitted. 

Conversely, when ft is equal to 1, it indicates that the 

information is retained or preserved for further processing, 

equation (2). 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑓)                (2) 

The input cell determines the information that needs to 

be added to the memory cells. 
 

              𝑖𝑡 = 𝜎 ([ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑖)                (3) 

              𝑐𝑡 =𝑡𝑎𝑛ℎ (𝑊[ℎ𝑡− 1, 𝑥𝑡) + 𝑏𝑐)             (4) 

              𝑐𝑡 = 𝑐𝑡−1 ∗ 𝑓𝑡 + 𝑖𝑡 ∗ 𝑐𝑡                (5) 

The output gate decides the information allowed to pass 

out of the memory cells. It also influences the value of the 

next hidden state, which is used as input for the next time step. 

A sigmoid function receives the current input as well as the 

prior hidden state. This is multiplied with the tanh of the cell 

state to obtain a new hidden state, equation (7). 

               𝑜𝑡 = 𝜎 ([ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑜)             (6) 

                 ℎ𝑡 =   ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡)              (7) 

2.5. Proposed Hybrid CNN-LSTM Model 

The hybrid model combines the power of CNN and 

LSTM. The proposed approach comprises several key 

components; maximum pooling is employed with a pool size 

and strides both set to 2, allowing for effective downsampling 

of the input data. This integration enables the model to 

leverage the strengths of both CNN and LSTM for improved 

performance. The first LSTM layer is configured with 100 

units, while the second LSTM layer utilizes 50 units. As for 

the loss function, the combination of Adam optimization and 

cross-entropy is employed. The model is trained using 20 

batches of 360 samples each. 
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2.5.1. Hyper Parameter Tuning 

The exceptional predictive performance of the models 

relies on the careful selection of optimal parameters, which 

is accomplished through a process known as hyperparameter 

tuning. In hybrid networks, crucial parameters such as the 

learning rate and the number of memory blocks or filters 

must be chosen optimally to attain the highest performance 

of each network. 

 2.6. Proposed Unified Early Detection Model 

To create a comprehensive approach, an encoder-decoder 

model is combined with a hybrid model.  The detection 

process centers on the predicted sampling points from the 

earlier prediction model. The second model is then trained 

using the most recent sampling points, treating the model's 

output as the label. The combined model is designed to predict 

the next 25 samples based on the given 56 samples, followed 

by the classification of the signal using the predicted samples. 

In order to assess the performance, the 25 sampling points 

predicted by the prediction model are fed into the 

classification models. The labels predicted by these models 

are then compared with the actual labels, enabling an 

evaluation of the classification accuracy. 

3. Results and Discussions  
3.1. Encoder Decoder-Based PQ Disturbance Forecasting 

Performance was measured using the Root Mean 

Squared Error (RMSE), Eq. 8, which calculates the root of the 

squared discrepancy between the actual and predicted values. 

RMSE was selected as it addresses the issue of negative term 

cancellation by squaring the differences. Taking the root of 

the squared differences ensures that the unit of the loss is 

consistent with the projected values. 

RMSE = √(
1

𝑛
∑ (𝑦𝑗 − ŷ𝑗)𝑛

𝑗=1 )                          (8) 

     In this equation, 'n' represents the total sample count, 

𝑦𝑗signifies the original signal, and ŷ𝑗denotes the decoded 

signal.  

 The subsequent 25 points are predicted using the initial 

56 points from the test1 dataset using the encoder-decoder 

model. Test1 has 1800 samples, whereas Train 1 has 7200. 

When comparing the computation time without PCA to one 

with PCA of five components, the time was much longer for 

the dataset without PCA. Further, the RMSE for the model 

excluding PCA was nearly two times higher than the other 

models. When RMSE for each disturbance was compared, C8 

had the smallest error, and C5 had the biggest. Figure 5 shows 

the comparison of actual and predicted values of mixed mode 

disturbance C8, swell, and harmonics. 

3.2. Detection of PQ Disturbances 

Two detection models were constructed to classify the 

disturbances. The effectiveness of these models was assessed 

using the test2 dataset, following their training on the train2 

dataset. The evaluation was based on several performance 

metrics, including Accuracy, Recall, Precision, and F1-Score. 

Accuracy, as defined by equation (9), calculates the 

proportion of accurately classified points in relation to the 

total number of points. Recall evaluates the model's capability 

to accurately recognize true positives. Precision quantifies the 

proportion of true positives in comparison to the overall 

number of positive predictions. Lastly, the F1 score provides 

a balanced measure of accuracy and recall by taking their 

harmonic mean. 

Accuracy = 
Total number of predictions 

True Positive+True negative
                     (9) 

 The convolutional layers in the hybrid CNN-LSTM 

model utilize 64 kernels of size 3. The model is trained using 

20 batches, each containing 360 samples. This hybrid model 

combines the strengths of Convolutional Neural Networks, 

enabling effective feature extraction from the data, and LSTM, 

which captures interdependencies and also automatically 

detects relevant patterns. By integrating these two 

components, the model leverages their respective advantages 

to improve performance and adaptability to the data at hand.

 
Fig. 5 Representation of encoder-decoder model 
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Table 2. Performance of 1D CNN model for mixed-mode disturbances 

Class Precision Recall F1-score 

Sag+ Interruption 0.95 0.63 0.76 

Swell +Interruption 0.90 1.00 0.95 

Oscillation +Interruption 1.00 1.00 1.00 

Sag +Oscillation 0.74 1.00 0.85 

Accuracy - - 0.96 

Table 3. Performance of CNN-LSTM model for mixed-mode disturbances 

Class Precision Recall F1-score 

Sag+ Interruption 0.97 1.00 0.98 

Swell +Interruption 0.97 0.99 0.98 

Oscillation +Interruption 0.99 1.00 0.99 

Sag +Oscillation 0.99 1.00 0.99 

Accuracy - - 0.99 

Table 4. Performance of combined model for mixed-mode disturbances 

Class Precision Recall F1-score 

Swell+ Harmonics 0.95 0.95 0.95 

Sagl+ Harmonics 0.57 1.00 0.73 

Oscillation + Harmonics 0.98 0.98 0.98 

Flicker + Harmonics 0.95 0.95 0.95 

Sag +Flicker 0.90 1.00 0.95 

Swell+Flicker 0.98 0.98 0.98 

Oscillation +Flicker 0.95 0.95 0.95 

Sag+Interruption 0.50 0.62 0.55 

Swell +Interruption 0.95 0.95 0.95 

Oscillation +Interruption 0.95 0.95 0.95 

Sag +Oscillation 0.52 1.00 0.68 

Accuracy   0.9 

In order to determine the appropriate learning rate, two 

trials within the range of 0.01 to 0.2 are conducted. Through 

this, optimal performance was achieved when using a learning 

rate of 0.01. Beyond this point, performance gradually 

declined. As a result, the learning rate is set to a fixed value of 

0.01. This selection ensures optimal model performance and 

facilitates effective learning and convergence. 

      The model's performance was enhanced by modifying 

parameters such as the count of convolutional and pooling 

layers, the quantity of filters and filter dimensions, and the 

type of padding. The model uses a single-layer LSTM network 

with 50 hidden units in the visible layer. This is followed by a 

thin, dense layer. The Adam optimizer optimized it. A batch 

size of 1 was used during the training, which lasted for 50 

epochs. Based on the evaluation metrics of the mixed mode 

disturbances presented in Tables II and III, it can be deduced 

that the hybrid CNN-LSTM architecture outperforms the 1D-

CNN approach. The accuracy of the hybrid model reached an 

impressive 99%, while the standard CNN model achieved an 

accuracy of 96%. Analysis of the confusion matrix further 

illustrates the superiority of the hybrid model, with only 12 

misidentified signals compared to 75 in the simple model. 

Additionally, the simple model exhibited an increase in 

misclassified classes. It is worth noting that the hybrid model 

involved the computation of more parameters, highlighting its 

increased complexity but superior performance. 
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3.3. Unified Prediction - Classification Model 

In the unified model, the 25 sampling points forecasted 

by the prediction model from the test1 dataset were fed to the 

detection models. The labels detected by these models were 

compared with the actual labels of test1 data. The same 

performance indicators used in the classification model were 

also used here to evaluate the performance of the unified 

prediction and classification model. Table IV demonstrates 

that the utilization of the CNN-LSTM classification model 

resulted in an accuracy rate of 90%. Conversely, when 

employing the simple CNN model, an accuracy rate of 85% 

was achieved. A 2% difference in the classification model 

turned out to be a 5% difference in the combined prediction 

and classification model. Also, the accuracy decreased from 

98% to 90% when predicted values were used for 

classification. Therefore, an improved version of the 

prediction model could be built to obtain better classification 

performance for the unified model. 

4. Conclusion 
The integration of advanced technologies and automation 

has led to more complex electrical systems, with a higher risk 

of PQ distortions, resulting in reduced efficiency, damage to 

equipment, and even complete failure of the electrical system. 

Thus, it is paramount to forecast and classify the PQ 

distortions accurately to take proactive measures to prevent or 

mitigate the impact of these disturbances. This paper proposes 

an early detection of PQ distortion with an effective 

forecasting system using an encoder-decoder model. Further, 

a hybrid deep learning architecture using CNN-LSTM is 

proposed to effectively classify the PQ distortions. Several 

experiments are conducted to refine a precise and optimal 

model, focusing on specific network parameters. PQ 

distortions of 18 simple and mixed classes are considered to 

validate the proposed model. The classification model 

provides an accuracy of 98% for the hybrid CNN-LSTM 

model and 95% for the CNN model. Based on the performance 

efficacy the proposed model can be recommended for real-

time PQ distortions monitoring in smart grid scenarios.  It also 

proposes a unified model for detecting the PQ disturbances 

from the predicted magnitude of the disturbances. 

Improvement of the encoder-decoder model with attention 

mechanism is considered as a future scope of this work to 

further improve the accuracy of the combined model. 
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