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Abstract - Plant Leaf Disease (PLD) cause extensive damage to crops, resulting in economic losses and reduced yields in 

agriculture. For timely intervention and effective disease management, earlier identification of these diseases is significant. 

Recently, the Deep Learning (DL) technique has had tremendous potential in the fields of Computer Vision (CV), involving 

recognition and classification of PLD. Researchers and developers have been capable of achieving tremendous performance in 

the identification and classification of PLDs by leveraging Deep Neural Networks (DNN), which aids in earlier diagnosis and 

intervention. This study offers a Modified Whale Optimization Algorithm with DL-Driven PLD Detection and Classification 

(MWOADL-PLDDC) technique. The MWOADL-PLDDC technique leverages the DL model with a hyperparameter tuning 

strategy for recognizing PLD. To obtain this, the MWOADL-PLDDC technique makes use of the Multi-Direction and Location 

Distribution of Pixels in Trend Structure (MDLDPTS) technique for feature extraction purposes. Meanwhile, the Deep Stacked 

Autoencoder (DSAE) method gets exploited for the recognition of healthy and diseased plant leaf images. For enhancing the 

detection rate of the DSAE approach, the IWOA is utilized to alter the hyperparameter value of the DSAE approach. The 

simulation outcomes demonstrate the efficacy of the MWOADL-PLDDC technique in the accurate recognition and classification 

of PLDs. The MWOADL-PLDDC technique exhibits high accuracy in distinguishing healthy leaves from diseased ones and 

accurately identifying the specific disease type. 

Keywords - Image classification, Deep learning, Plant leaf disease, Computer vision, Convolutional whale optimization 

algorithm.

1. Introduction  
PLD was liable for reducing crop productivity, which can 

affect the food production systems globally, leading to 

economic loss. PLDs and pests are accountable for around 20-

40% reduction in global food productivity based on the report 

of the Food and Agriculture Organization (FAO) [1]. 

Globally, plant ailments are accountable for an approximated 

value of 13% of reduction in crop productivity. These 

statistical values highlighted the significance of recognizing 

plant diseases to eliminate crop reduction. Nevertheless, it is 

essential to realize the factors accountable for plant disease 

[2]. There are three factors supporting the disease 

development in the plants such as favourable environment, 

pathogen, and host [3]. In many conditions, diseases start to 

indicate signs and affect the plants from the bottom-up order 

and several PLDs spread out all over the crop after infections. 

Hence, crops are required to be observed continuously as 

primarily managing the disease will support in avoiding the 

spreading [4]. In many scenarios, plant disease also emerges 

in the season after they are pollinated. Efficient plant disease 

detection includes recognition of several diseases in various 

crops and many concurrent diseases, primary-season plant 

disease recognition, approximating the seriousness of the 

diseases, useful measures to carry for managing the disease to 

restrict its spread out and estimating the applicable volume of 

pesticides [5]. Image-based plant disease recognition is the 

latest investigating field by numerous research workers [6]. 

Since crop or yield wastage is raising because of diseases, it 

becomes essential to recognize the diseases efficiently within 

a particular time [7]. In growing countries, specifically in 

South Asia majority of the population is based on farming 

indirectly or directly, in countries are becoming significant to 

make use of applications based on detecting vegetation 

ailments that can support cultivators to know the causes of 

diseases and also receive the prevention to handle them [8]. 

Early recognition of PLD based on the leaf colour, 

development of the pattern and size of the leaf, etc., can be 

useful to the cultivators.  Machine Learning (ML) was 

initiated to obtain an interest in plant disease recognition about 

20 years ago when its implementations were considered and 
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investigations were examined for plant diseases and 

agriculture. Conventional ML methods were commonly used 

in research communities for recognizing plant diseases [9]. 

Few classical ML methods were utilized for the detection of 

plant ailments, including SVM for detecting tomato disease, 

detection of K-Nearest Neighbour (KNN) for soybean disease, 

and detection of random forests for tomato disease. DL is a 

subcategory of ML [10]; it has become a preferred method for 

the detection of diseases because of improved computational 

abilities, power, availability, and storage of huge amounts of 

databases. 

This study suggests a Modified Whale Optimization 

Algorithm with DL-Driven PLD Detection and Classification 

(MWOADL-PLDDC) method. The MWOADL-PLDDC 

approach makes use of the Multi-Direction and Location 

Distribution of Pixels in Trend Structure (MDLDPTS) 

approach for feature extraction purposes. Meanwhile, the 

Deep Stacked Autoencoder (DSAE) technique gets exploited 

for the recognition of healthy and diseased plant leaf images. 

For enhancing the detection rate of the DSAE approach, the 

IWOA is utilized to alter the hyperparameter value of the 

DSAE approach. The simulation outcomes demonstrate the 

efficacy of the MWOADL-PLDDC technique in the accurate 

recognition and classification of PLDs. 

2. Related Works 
In [11], a new image processing method and multiple 

class SVM are utilized to identify and classify the diseases of 

grape leaves. In this study, SVM was utilized as a robust 

classification algorithm, where PCA was implemented for the 

reduction of feature dimension. Lastly, the relevant feature 

was chosen by selecting relief features. In [12], the study 

adopted an ML method for the earlier diagnosis of grape leaf 

diseases and precisely differentiated between dissimilar 

classes of diseases. Moreover, the CNN-based Classification 

(CNNC) algorithm and KNN are proposed for classifying 

PLDs. Next, the classification technique is implemented on 

the high-quality gradient-based feature. Hossain et al. [13] 

examined a technique for recognizing and classifying the PLD 

utilizing the KNN approach. The texture feature was extracted 

in leaf images for classification.  

In [14], four modified DL algorithms are introduced for 

classifying and recognizing grape leaf disease based on grape 

leaf datasets. In this study, the TL model was utilized based 

on three pre-trained ML architectures (VGG16, AlexNet, and 

MobileNet).  Lilhore et al. [15] give a wide-ranging learning 

model for the real-time recognition of Cassava leaf disease 

dependent upon Enhanced CNN (ECNN). The typical CNN 

architecture exploits data pre-processing features, which 

increases the computation overheads. A depthwise 

convolution was used to resolve the CNN issue in the ECNN 

algorithm. Singh et al. [16] introduce a strategy employing an 

enhanced CNN (ECNN) technique.  

Here, gamma correction, distinct block processing, and 

global average election polling with batch normalizing 

features are utilized. In [17], the author introduced a DL-based 

approach for classifying and detecting plant disease in leaf 

imageries taken in various resolutions. A compact CNN 

model was trained on larger images of plant leaves data from 

several countries. Images with different inter-and-intra-class 

variants have challenging and complex environments that are 

addressed in these Dense NN models. 

3. The Proposed Model 
In this paper, a novel PLD detection system is established, 

named the MWOADL-PLDDC method. The MWOADL-

PLDDC technique leverages the DL model with a tuning 

strategy for PLD recognition. It comprises three stages such as 

MDLDPTS feature extractor, IWOA and DSAE based tuning 

and classification. Figure 1 portrays the complete workflow of 

the MWOADL-PLDDC methodology. 

3.1. Design of MDLDPTS Model 

The presented work combined MDLDPTS that efficiently 

represents data variation of pixels, local design’s spatial 

procedure, and relation amid local-level structure as 

large\equal\small trends of colour, shape, and texture data, but 

equal trend represents the same intensity values, small and 

large trend refers to the intensity values in large to small, and 

vice versa [18]. Moreover, the MDLDPTS also encrypts the 

average place for the pixel value distribution to the overall 

trends from the local-level structure, and to utilize the model, 

RGB imageries are changed as HSV colour spacing next 

colour quantized on 𝑆, 𝑉, and 𝐻 texture quantized on V and 

edge quantized on Sobel function executed V element imagery 

can be carried out and the levels of quantized were fixed to 

108, 20, 9 for the data of colour, texture, and edge 

correspondingly. The local structure to all the 3x3 non-

overlapping sub-images can be recognized to all each 

colour\texture\edge quantization data from the procedure of 

trends. MDLDPTS is signified as matrix output of 

colour\texture\edge vs. average place for dispersion of pixels 

of large\equal\small trends to the overall orientations. The 

calculated aspects of colour, texture, and edge for trend 

formation and its positionings are shown as: 

𝐹𝜃 = {(𝜃𝐸
𝑄𝑐 , 𝜃𝑆

𝑄𝑐 , 𝜃𝐿
𝑄𝑐), (𝜃𝐸

𝑄𝑒 , 𝜃𝑆
𝑄𝑒 , 𝜃𝐿

𝑄𝑒), (𝜃𝐸
𝑄𝑡 , 𝜃𝑆

𝑄𝑡 , 𝜃𝐿
𝑄𝑡)}      (1) 

Whereas orientation (𝜃) ∈ {0°, 45°, 90°, 135°}, 
quantization edge value (𝑄𝑒) ∈ {1,2, … ,9}, colour values 

quantized (𝑄𝑐) ∈ {1,2, … ,108}, quantization texture value 

(𝑄𝑡) ∈ {1,2, … ,20}, 𝐿, 𝐸, and 𝑆 represent the large, equal, and 

small trends structures correspondingly, and 𝜃𝐸
𝑄𝑐 , 𝜃𝐸

𝑄𝑒  and 𝜃𝐸
𝑄𝑡  

portrays the orientation of equal trend structure for 𝑄𝑐, 𝑄𝑒  and 

𝑄𝑡, and the size of matrices are 108x4, 9x4, and 20x4 

correspondingly. The calculated average place for the 

distribution of pixels for trends structure was depicted as: 

𝐹𝜇 = {(𝜇𝐸𝜃

𝑄𝑐 , 𝜇𝑆𝜃

𝑄𝑐 , 𝜇𝐿𝜃

𝑄𝑐) , (𝜇𝐸𝜃

𝑄𝑒 , 𝜇𝑆𝜃

𝑄𝑒 , 𝜇𝐿𝜃

𝑄𝑒) , (𝜇𝐸𝜃

𝑄𝑡 , 𝜇𝑆𝜃

𝑄𝑡 , 𝜇𝐿𝜃

𝑄𝑡) (2)
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Fig. 1 Overall flow of MWOADL-PLDDC approach  
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Whereas 𝜇 illustrates the average place for the pixel value 

distribution, 𝜇𝐸𝜃

𝑄𝑐 , 𝜇𝐸𝜃

𝑄𝑒  and 𝜇𝐸𝜃

𝑄𝑡  imply the average place for the 

pixel dispersion at orientation 𝜃 of equal trend structures for 

𝑄𝑐, 𝑄𝑒 and 𝑄𝑡 respectively. The estimate of 𝜇 in each local 

trends structure is as follows: 

𝜇 =  
1

𝑀
∑𝑃𝑖

𝑀

𝑖=0

                                      (3) 

Whereas 𝑃 and 𝑀 indicate the pixels and count of 

intensity values from the trend structure. Therefore, the 

MDLDPTS is determined as follows: 

𝐹 = {𝐹𝜃
 , 𝐹𝜇}                                     (4) 

3.2. Plant Disease Detection using DSAE Model 

The DSAE model is used for the detection of PLD in this 

work. The Autoencoder (AE) method is a type of unsupervised 

NN which comprises encoding and decoding parts [19]. In the 

encoder phase, the implied property of the input data can be 

studied, and in the decoder phase, the input data is reproduced 

by using novel features which are studied. 

The encoder’s output of the HL features, named as coding 

feature, can be considered as a representation of data 𝐷, which 

is inputted into the encoding part. Simultaneously, the features 

of the HL are the features that can be attained using the 

reduction dimensional of the encoding part. In such cases, the 

data of HL 𝐻 have small dimensional than the data of 𝐷 and 

𝐷𝑜  input and the output layers; this can be given by the detail 

that |𝐷| is higher than |𝐻|, |𝐷𝑜|, and |𝐷| was equivalent to 

|𝐷𝑜|. Firstly, compute 𝐻 utilizing the mapping matrix = 𝑥(𝐷) 

that takes from the 𝐷 input layer to 𝐻 HLs. Then, evaluate 𝐷𝑜 

by the map matrix 𝐷𝑜 = 𝑦(𝐻) that takes from the 𝐻 HLs to 

𝑡ℎ𝑒 𝐷𝑜 output layer. 

𝑥: 𝛼 → 𝛿 

𝑦: 𝛿 → 𝛼 

𝑥, 𝑦 = arg min
𝑥,𝑦

||𝐷 − 𝑦[𝑥(𝐷)]||2                  (5) 

Where 𝛿 denotes the magnitude of hidden space, 𝛼 refers 

to the embedding input space (outcome space). The input 

space, characteristic space represented as 𝐷, 𝐻 refers to the 

component of 𝛼, 𝛿 and is transmitted to the self‐encoder, and 

the objective is to resolve the map (𝑥, 𝑦) that presents among 

the 2 spaces to reduce the reconstructed error of input features. 

It is also possible that a single AE is capable of decreasing 

the dimensionality of the input feature. The DSAE works 

based on the following principles. 

• Train the initial AE dependent upon the input dataset and 

later obtain the feature vectors that are studied. 

• The feature vector in the prior layer was employed as the 

layer’s input, and this procedure lasted until the training 

was completed. 

• The Backpropagation (BP) model is used after the HL has 

been trained for performing fine-tuning. This can be 

obtained by updating the weights and reducing the cost 

function using a labelled training set. 

3.3. Hyperparameter Tuning using IWOA 

The IWOA is used to improve the detection outcomes of 

the DSAE algorithm. The WOA mimics humpback whales’ 

haunting demeanours. The algorithm comprises the 

exploration and exploitation phases [20]. Exploration is the 

procedure of finding prey.  

The given equation describes the encircling behaviours of 

humpback whales during hunting prey. The leading solution 

is considered the target prey. The residual solution attempts to 

end the aimed prey. 

�⃗� = |𝜎 ⋅ �⃗� 𝑎(𝑠) − �⃗� (𝑠)|                     (6) 

�⃗� (𝑠 + 1) = |�⃗� 𝑎(𝑠) − 𝜆 ⋅ �⃗� |                 (7) 

Whereas �⃗� 𝑎 denotes the optimal solution, 𝑣 shows the existing 

iteration, the coefficient vector was 𝜎 and 𝜆  

𝜆 = 2�⃗� . 𝑞 − 𝑎                                     (8) 

𝜎 = 2. 𝑞                                          (9) 

Where (0,1)𝑞 represents the random vector, and  𝑏⃗⃗   
denotes the linear reduce coefficient from two to 𝑧𝑒𝑟𝑜. By 

implementing 𝜆  and 𝜎  vectors in the existing location, 

different locations are compared to the optimum solution and 

are controlled. Assume that the optimum solution is prey by 

using Eq. (7), variations in whales' existing location closer to 

the prey, and simulate that situation where the prey was 

encircled. The 2 mathematical modeling are defined, which 

mimics the humpback whale BubbleNet attacks. 

1. Shrinking encircling strategy: The vector �⃗�  declined 

linearly. The co-efficient vector, a fluctuation limit 

dependent upon the arbitrary vector 𝑞, 𝑏 is within 

(−𝜆 , 𝜆 ), �⃗�  declined from 𝑡𝑤𝑜 to 𝑧𝑒𝑟𝑜. 

2. Spiral upgrade location: The humpback whale encircles 

the food source in a motion logarithmic spiral afterwards, 

the 1st method defines the length between self and prey. 

�⃗� (𝑠 + 1) = �⃗� × 𝑓𝜇𝛿 ×  cos (2𝜔𝛿) + �⃗� 𝑎(𝑠)          (10) 

The distance among humpback whales, as well as their 

prey, is characterized as �⃗�  = |�⃗� 𝑎(𝑠) − �⃗� (𝑠)|. In [−1,1]𝛿, is an 

arbitrary number. 𝜇 is constant and defines that the 

logarithmic spiral will be looked at. In the exploitation stage, 

when the prey position is defined, the humpback whale dives 

deep in to generate spiral-like bubbles nearby the food source 

and later moves upward towards the surface. During the 

iteration method, the hunting behaviour assumes that the 

spiral‐structured path and the shrinking circle have the same 

implementation probability for updating the humpback whale 

location. 
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WOA selects the reference solution through a 𝜆  arbitrary 

vector value, which is lesser than‐l or greater than+l. 

�⃗� = |𝜎. 𝑌𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − �⃗� |                                  (11) 

𝑌(𝑠 + 1) = 𝑌𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝜆 . �⃗�                             (12) 

Where 𝑌𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   denotes the location vector of the solution 

that is randomly chosen from the existing population. 

The co-efficient vector 𝜆  allows a shift between 

exploitation as well as exploration. If |𝜆 | > 1 exploration was 

implemented, and if |𝜆 | < 1, then exploration was performed. 

WOA has the potential to switch between spiral-shaped paths 

and reduce circles during the exploitation stage. Although the 

WOA was extensively used to resolve different engineering 

problems, it has the problem of low calculation accuracy and 

slow convergence rate while handling complicated optimizer 

problems [21]. In this study, an IWOA was introduced to 

overcome this challenge, where the equal pitch Archimedean 

spiral curve and self‐adaptive inertia weight are extra to the 

original WOA for improving the performance: 

𝑖𝑤 = 𝑖𝑤max − (𝑖𝑤max − 𝑖𝑤min)(
𝑡

𝑇max

)
1
𝑡                  (13) 

In Eq. (13), 𝑖𝑤𝑚𝑎𝑥  and 𝑖𝑤𝑚𝑖𝑛 indicate maximal and 

minimal inertia weights, correspondingly and 𝑇𝑚𝑜𝑥  indicates 

the maximal amount of iteration.  
𝑌(𝑡 + 1)

= {
𝑖𝑤 ∙ 𝑌∗(𝑡) − 𝐴 ∙ |2𝑟 ∙ 𝑌∗(𝑡) −∙ Y(𝑡)|, 𝑝 < 0.5

𝑖𝑤 ∙ 𝑌∗(𝑡) + |𝑌∗(𝑡) − 𝑌(𝑡)| ∙ 𝑒𝑏𝑙 ∙ cos(2𝜋𝑙), 𝑝 ≥ 0.5
   (14) 

It can be notable in Equation (11), in which the inertia 

weight non-linearly reduces with the increasing iteration. 

Initially, the inertia weight is larger; hence, the model consists 

of a better global searching capability, making the whale 

rapidly approaching the near prey region (fittest solution). 

These principles are for the 2D case, where the location 

(𝑦1, 𝑦2) of humpback whales is updated based on the present 

optimum location (𝑦1
∗, 𝑦2

∗). Any position near the optimum 

whale might be different by shifting the coefficient variables 

of 𝑎 and 𝑟 values. Due to poor algorithm periodicity, when the 

pitch of the spiral curve is smaller than the humpback whales, 

any region couldn't be searched. The Archimedean spiral 

curve is used to replace the logarithmic spiral curve from the 

WOA: 

{
𝑦1 = (𝑎0 + 𝑏 ∙ 𝑙) cos (2𝜋𝑙)
𝑦2 = (𝑎0 + 𝑏 ∙ 𝑙)𝑠𝑖𝑛(2𝜋𝑙)

                      (15) 

Where 𝑎0 = 0 and 𝑏 = 1 is an instance of the 

Archimedean spiral curve. The pitch of spiral curves is a fixed 

value that could be changed simply to attain optimum 

accuracy. 
𝑌(𝑡 + 1)

= {
𝑖𝑤 ∙ 𝑌∗(𝑡) − 𝐴 ∙ |2𝑟 ∙  𝑌∗(𝑡) − 𝑌(𝑡)|, 𝑝 < 0.5

𝑖𝑤 ∙ 𝑌∗(𝑡) + |𝑌∗(𝑡) − 𝑌(𝑡)| ∙ (𝑎0 + 𝑏 ∙ 𝑙) ∙ cos(2𝜋𝑙) , 𝑝 ≥ 0.5
   (16) 

The fitness function is a main aspect of the IWOA 

approach. An encoder solution was implemented for 

estimating the best candidate solutions. Here, the accuracy 

output is the key condition utilized for scheming a FF. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                             (17) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                    (18) 

Where 𝑇𝑃 and 𝐹𝑃 signify the true and the false positive 

values. 

Table 1. Dataset description 

Classes Image Numbers Classes Image Numbers 

ALD TLD 

Healthy 554 BS 3404 

BR 199 EB 2886 

Scab 221 Healthy 516 

CAR 99 LB 3769 

CLD LM 2195 

PM 409 SLS 1331 

Healthy 334 SM 2251 

CPLD TS 2195 

CLS 187 MV 2411 

CR 432 YLCV 2144 

Healthy 354 PLD 

NLB 433 BS 1377 

GLD Healthy 1372 

BR 407 PTLD 

LB 465 EB 1377 

Healthy 146 LB 1372 

Esca 379 Healthy 193 
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4. Results and Discussion 
In the present section, the investigational assessment of 

the MWOADL-PLDDC method was investigated utilizing 

different PLD datasets [22] such as apple, cherry, corn plant, 

tomato, grapes, pepper, and potato consisting classes such as 

Septoria Leaf Spot (SLS), Late Blight (LB), Early Blight (EB), 

Leaf Mold (LM), Common Rust (CR), Bacterial Spot (BS), 

Powdery Mildew (PM), Target Spot (TS), Spider Mites (SM), 

Mosaic Virus (MV), Yellow Leaf Curl Virus (YLCV), Cedar 

Apple Rust (CAR), Healthy, Northern LB (NLB), Esca, 

Cercospors-LS (CLS), Leaf Blight (LB), and Black Rot (BR). 

Figure 2 displays the image samples. An overall PLD 

detection output of the MWOADL-PLDDC methodology is 

tested under various datasets in Table 2. The results portrayed 

that the MWOADL-PLDDC methodology categorizes several 

class labels on all datasets. On the Apple Leaves Dataset 

(ALD), the MWOADL-PLDDC approach reaches average 

𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, 𝑎𝑐𝑐𝑢𝑦, 𝐹1𝑠𝑐𝑜𝑟𝑒, and AUC of 99%, 98.99%, 

99%, 98.99%, and 99.62% respectively. 

At the same time, on the Cherry Leaves Dataset (CLD), 

the MWOADL-PLDDC approach obtains average 𝑠𝑒𝑛𝑠𝑦 , 

𝑠𝑝𝑒𝑐𝑦, 𝑎𝑐𝑐𝑢𝑦, 𝐹1𝑠𝑐𝑜𝑟𝑒 , and AUC of 99%, 99%, 99.65%, 99%, 

and 99.23% correspondingly. Simultaneously, on the Corn 

Plant Leaves Dataset (CPLD), the MWOADL-PLDDC 

technique obtains average 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, 𝑎𝑐𝑐𝑢𝑦, 𝐹1𝑠𝑐𝑜𝑟𝑒 , and 

AUC of 97.47%, 97.43%, 97.50%, 97.36%, and 97.15% 

correspondingly. Concurrently, on the Grape Leaves Dataset 

(GLD), the MWOADL-PLDDC technique attains average 

𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, 𝑎𝑐𝑐𝑢𝑦, 𝐹1𝑠𝑐𝑜𝑟𝑒, and AUC of 96.30%, 96.26%, 

97.60%, 96.50%, and 96.35% respectively.  Similarly, on the 

Pepper Leaves Dataset (PLD), the MWOADL-PLDDC 

method obtains an average 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, 𝑎𝑐𝑐𝑢𝑦, 𝐹1𝑠𝑐𝑜𝑟𝑒 , and 

AUC of 95.74%, 95.86%, 99.62%, 95.88%, and 97.09% 

correspondingly. Lastly, on the Potato Leaves Dataset 

(PTLD), the MWOADL-PLDDC method obtains average 

𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, 𝑎𝑐𝑐𝑢𝑦, 𝐹1𝑠𝑐𝑜𝑟𝑒, and AUC of 95.75%, 95.86%, 

95.90%, 95.89%, and 96.04% subsequently. 

 
Fig. 2 Sample images 
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Table 2. PLD detection outcome of MWOADL-PLDDC method under diverse datasets 

Classes 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑨𝒄𝒄𝒖𝒚 𝑭𝟏𝑺𝒄𝒐𝒓𝒆 AUC 

ALD 

Healthy 99.00 98.99 98.99 98.99 99.61 

BR 99.00 98.99 99.00 98.99 99.62 

Scab 98.99 98.99 99.00 98.99 99.60 

CAR 99.00 99.00 99.00 98.99 99.65 

Average 99.00 98.99 99.00 98.99 99.62 

CLD 

PM 98.99 99.00 99.70 99.00 99.25 

Healthy 99.00 99.00 99.60 99.00 99.20 

Average 99.00 99.00 99.65 99.00 99.23 

CPLD 

CLS 97.61 97.05 97.52 96.95 97.84 

CR 97.60 97.54 97.78 97.29 96.96 

Healthy 96.96 97.59 97.56 97.38 96.90 

NLB 97.69 97.52 97.12 97.82 96.91 

Average 97.47 97.43 97.50 97.36 97.15 

GLD 

BR 96.43 96.13 97.19 96.60 96.19 

LB 96.44 96.14 97.47 96.52 96.47 

Healthy 96.27 96.40 97.32 96.56 96.32 

Esca 96.05 96.37 98.41 96.32 96.41 

Average 96.30 96.26 97.60 96.50 96.35 

PLD 

BS 95.70 95.79 99.64 95.90 97.10 

Healthy 95.77 95.92 99.60 95.85 97.07 

Average 95.74 95.86 99.62 95.88 97.09 

PTLD 

EB 95.71 95.87 95.97 95.91 95.99 

LB 95.80 95.91 95.93 95.91 96.10 

Healthy 95.73 95.80 95.79 95.86 96.02 

Average 95.75 95.86 95.90 95.89 96.04 

TLD 

BS 93.94 94.37 93.06 93.88 95.04 

EB 94.60 93.76 93.02 93.44 95.09 

Healthy 94.31 94.23 93.20 94.32 95.05 

LB 93.42 94.44 93.50 94.36 95.08 

LM 93.25 93.95 94.20 93.15 95.08 

SLS 94.99 94.86 93.13 94.45 95.04 

SM 93.80 94.22 93.33 93.65 95.09 

TS 94.04 93.77 93.62 94.66 95.07 

MV 92.99 94.60 93.09 94.90 95.07 

YLCV 93.06 93.29 93.03 93.26 95.00 

Average 93.47 93.97 93.27 94.12 95.06 
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Table 3. Relative outcome of MWOADL-PLDDC model with other methods under diverse datasets 

Classifier NB RBFNN FkNN DT SOM RF SVM Fuzzy_SVM MWOADL-PLDDC 

Apple 
CACC 90.10 92.40 95.90 96.50 97.10 97.80 98.40 98.90 99.00 

AUC 93.70 94.50 97.60 98.00 98.40 98.90 99.20 99.50 99.62 

Cherry 
CACC 95.10 95.90 97.70 97.90 98.50 98.90 99.20 99.50 99.65 

AUC 93.20 94.70 96.50 96.90 97.40 98.00 98.50 99.10 99.23 

Corn 
CACC 90.90 91.40 92.80 93.30 93.80 94.50 94.90 95.60 97.50 

AUC 91.80 92.20 93.70 94.30 94.70 95.50 96.10 96.70 97.15 

Grapes 
CACC 92.70 93.30 94.90 95.30 95.70 96.30 96.70 97.10 97.60 

AUC 90.60 91.80 92.70 93.30 93.70 94.40 95.10 95.90 96.35 

Pepper 
CACC 95.10 95.70 97.30 97.70 98.30 98.80 99.10 99.40 99.62 

AUC 90.80 92.40 93.50 93.90 94.50 95.10 95.50 96.20 97.09 

Potato 
CACC 90.50 91.30 92.80 93.20 93.60 94.10 94.60 95.10 95.90 

AUC 91.30 92.20 93.40 93.90 94.40 94.90 95.30 95.70 96.04 

Tomato 
CACC 87.20 88.10 89.10 89.80 90.40 91.30 91.90 92.40 93.27 

AUC 90.20 90.60 91.70 92.30 92.70 93.20 93.70 94.20 95.06 

 

Lastly, in the Tomato Leaves Dataset (TLD), the 

MWOADL-PLDDC technique attains increased CACC of 

93.27% while the NB, RBFNN, FkNN, DT, SOM, RF, SVM, 

and Fuzzy_SVM models obtain decreased CACC of 87.20%, 

88.10%, 89.10%, 89.80%, 90.40%, 91.30%, 91.90%, and 

92.40% correspondingly. These results demonstrated the 

superior results of the MWOADL-PLDDC technique on the 

plant disease detection process. 

5. Conclusion 
In this written article, a novel PLD detection approach is 

established, named the MWOADL-PLDDC technique. The 

MWOADL-PLDDC technique leverages the DL model with a 

hyperparameter tuning strategy for PLD recognition.  

It comprises three stages such as MDLDPTS feature 

extractor, DSAE and IWOA based classification and 

hyperparameter tuning. To enhance the recognition rate of the 

DSAE algorithm, the IWOA is enforced to alter the values of 

the hyperparameter of the DSAE algorithm. The simulation 

outcomes demonstrate the efficacy of the MWOADL-PLDDC 

method for precisely detecting and classifying plant ailments.  

The MWOADL-PLDDC technique model exhibits high 

accuracy in distinguishing healthy leaves from diseased ones 

and accurately identifying the specific disease type.  In the 

future, the outcome of the MWOADL-PLDDC methodology 

was improvised by the feature fusion and ensemble learning 

approaches.
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