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Abstract - This study explores the adaptation of the Tree-Seed Algorithm (TSA), a population-based optimization method, for 

solving binary optimization problems. Initially designed for problems featuring continuous solution spaces, TSA is adjusted to 

address binary-structured optimization challenges. Three distinct approaches, namely the sigmoid function, modulo function, 

and xor logic gate, are employed to address TSA for binary optimization problem-solving. The efficacy of these methods is 

evaluated through experimentation on Uncapacitated Facility Location Problems (UFLPs), representative pure binary problems 

from existing literature. A comprehensive analysis is conducted using a selection of well-known small, medium, and large-sized 

UFLP instances to assess the performances and the impact of TSA's control parameters. Comparative analysis of obtained 

results reveals promising outcomes achieved by the proposed algorithm. 
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1. Introduction  
Recently, numerous optimization algorithms, such as 

populations, have emerged to address optimization problems 

with diverse characteristics. Among these algorithms, the 

Tree-Seed Algorithm (TSA) has attracted attention for its 

effectiveness in resolving such optimization challenges. TSA 

is characterized as an algorithm that operates through iterative 

processes and is suggested for addressing unconstrained 

continuous optimization challenges. In the basic variant of 

TSA, the key control parameters are analysed, and its efficacy 

was compared with the firefly algorithm [4], artificial bee 

colony (ABC) [2] [3], particle swarm optimization (PSO) [1], 

and bat algorithm [5]. In another study, the TSA was applied 

to address the pressure vessel design problem, which is a 

constrained optimization problem. However, despite TSA's 

demonstrated ability to handle constrained or unconstrained 

optimization problems, a notable research gap exists in its 

adaptation for solving binary optimization problems. Such 

problems possess a binary-structured solution space, where 

decision variables are constrained to binary values of 0 or 1. 

While several population-based heuristic methods have been 

modified for binary optimization — employing approaches 

like the sigmoid function in binary PSO [6], modulo 

operations in PSO [7] and ABC [2] [3], and XOR-based logic 

gates in ABC [2] [3] — the exploration of TSA variants for 

binary optimization remains relatively unexplored. 

This gap in the literature highlights the need for novel 

approaches to adapt TSA specifically for binary optimization 

problems, addressing challenges such as solution 

representation, exploration-exploitation balance, and 

convergence dynamics unique to this problem domain. By 

developing and evaluating modified versions of TSA tailored 

for binary optimization, authors aim to fill this research gap 

and contribute to the advancement of evolutionary 

computation techniques in solving binary optimization 

problems. This study aims to bridge this gap by proposing 

three modified versions of TSA tailored specifically for binary 

optimization problems. Our focus is on addressing the 

Uncapacitated Facility Location Problem (UFLP), a classical 

binary optimization problem with a benchmark dataset 

available in the literature, thereby facilitating the performance 

evaluation of our proposed TSA variants. The paper is 

structured as follows: Section, I providing an overview of the 

research objectives; a brief review of the literature on binary 

optimization and the mathematical model of the problem. 

Section II demonstrates the Basic and Modified Versions of 

TSA. Section III elaborates on the proposed binary version of 

the Tree Seed Algorithm (TSA). Section IV details the 

experimental setup such as parameter settings and evaluation 

criteria. Section V provides a comprehensive discussion of the 

results obtained from the experiments. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.1. Related Work 

This section illustrates the literature and the related work 

of the study. The population-based swarm intelligence 

methods have been developed with inspiration from natural 

phenomena. Tree-Seed Algorithm is also invented by the trees 

and their seeds in nature, and the tree collection is named stand 

instead of population or swarm, but the working of the stand 

is similar to the working of the swarm. The aim of the stand is 

to maintain and sustain the existence of the trees by producing 

seeds from the trees. Swarm intelligence refers to the field of 

study focused on collective behaviours emerging from the 

local interactions among many individuals who coordinate 

their activities through decentralized systems [8-10]. 

In the literature, the most prominent examples of swarm 

intelligence algorithms include particle swarm optimization 

(PSO), Ant Colony Optimization (ACO), and the Artificial 

Bee Colony (ABC) algorithm. PSO, a stochastic, population-

based technique conceived by Dr. Eberhart and Dr. Kennedy 

in 1995, draws inspiration from natural phenomena such as 

bird flocking or fish schooling [1]. Ant colony optimization, 

introduced by M. Dorigo and collaborators in the early 1990s, 

represents a pioneering nature-inspired metaheuristic 

approach for addressing Combinatorial Optimization (CO) 

challenges [11]. 

ACO achieves finding an optimal solution for the search 

problems through the inspiring source of ants' foraging 

behavior. ABC has been suggested to solve continuous 

optimization problems by inspiring waggle dance and food 

search behaviors of honey bees [2], [3]. One of the recently 

introduced algorithms is the Tree-Seed Algorithm (TSA), 

which draws inspiration from natural processes such as the 

production of trees and seeds. This algorithm was developed 

in 2015. TSA addresses the interaction between trees and their 

seeds as they grow in a specific area of land. 

According to nature way, trees grow and spread on the 

ground over their seeds. These seeds are cultivated over time 

and generate new trees. The trees and seeds' location is 

regarded as an n-dimensional solution space corresponding 

with the possible solution of an optimization problem. The 

search starts with sowing the trees into the ground. During the 

iterations, the number of seeds of each tree is produced. TSA 

was successfully applied to solve constrained and 

unconstrained optimization problems and multilevel 

thresholding problems. 

Many swarm intelligence methodologies have emerged in 

recent years as solutions for tackling Operational Research 

(OR) dilemmas, including the Uncapacitated Facility Location 

Problem (UFLP), which stands out as one of the most 

intensively researched discrete location predicaments. 

Concerned with the optimal placement of an undetermined 

number of facilities to minimize transportation costs [7], [12], 

[13]. 

1.2. Mathematical Model of UFLP 

The Uncapacitated Facility Location Problem (UFLP) 

entails a scenario whereby a set of customer locations, 

identified as m, needs to be served by a selection of potential 

facilities n. Each facility incurs a fixed cost fcj, and there 

exists a transportation cost cij associated with serving 

customer I from facility j. Notably, there are no capacity 

constraints imposed on any candidate facility, and each 

customer's entire demand must be assigned to a single facility 

[14]. The objective of this problem is to determine the optimal 

number of facilities to be established and to identify those 

facilities in order to minimize the total cost. The mathematical 

representation of this problem can be articulated as follows: 

𝑍 = 𝑚𝑖𝑛(∑ ∑ 𝑐𝑖,𝑗 . 𝑥𝑖,𝑗 + ∑ 𝑓𝑐𝑗 . 𝑦𝑗
𝑛
𝑗=1

𝑛
𝑗=1

𝑚
𝑖=1 )  (1) 

subject to: 
∑ 𝑥𝑖,𝑗 = 1𝑛
𝑗=1 ∀𝑖𝑖𝑛𝑚   (2) 

0 ≤ 𝑥𝑖,𝑗 ≤ 1     (3) 

In the provided context, where i = 1...m and j = 1, ...,n, xij 

represents the quantity supplied from facility I to customer j, 

and yj indicates whether facility j is established ( yj = 1) or not 

(yj = 0). Equation 2 ensures that all customer demands are 

fulfilled by at least one operational facility, while Equation 3 

maintains the integrity of the solution. After implementing the 

UFL problem into specific algorithms, researchers use the 

ORLIB dataset, which is one of the most widely used UFLP 

benchmark instances, to evaluate the performance and 

accuracy of their algorithms. ORLIB instances are part of OR-

Library introduced by J.E Beasley in 1996 for a variety of 

Operations Research (OR) problems [15]. This test suite 

comprises three sets of benchmark problems m×n, categorized 

by their dimensions, where m represents the number of 

customers and n denotes the number of facilities. Specifically, 

there are four small-sized problems labeled as Cap71–74 and 

four medium-sized problems labeled as Cap101–104. The 

remaining four problems, denoted as Cap131–134, are 

categorized as large-sized in this investigation. This problem 

set is selected to investigate the performance of binary 

versions of TSAs because Cap problems are pure binary 

problems, and there are no floating decision variables in the 

problem model. The problem is also a well-known problem, 

and the effectiveness of many swarms or evolutionary 

computation methods are analyzed in solving these problems. 

2. The Foundational Version of the Tree-Seed 

Algorithm  
In the fundamental version of TSA, trees and their seeds 

symbolize potential solutions to the optimization problem. 

After control parameters (population size, upper and lower 

bound for the various seeds and search tendency – ST) are set, 

the trees are scattered to the search space of the problem by 

using the equation given as follows: 

𝑇𝑖,𝑗 = 𝐿𝑗,𝑚𝑖𝑛 + 𝑟𝑖,𝑗(𝐻𝑗,𝑚𝑎𝑥 − 𝐿𝑗,𝑚𝑖𝑛),𝑗 = 1,2, … ,𝐷𝑎𝑛𝑑𝑖 =

1,2,… , 𝑁           (1) 
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Fig. 1 The solution update procedure of TSA using the ST parameter 

Where, 𝑇𝑖,𝑗  represents the jth dimension of ith tree, 𝐿𝑗,min 

is the lower bound of search space, 𝐻𝑗,max indicates the upper 

bound of search space, 𝑟𝑖,𝑗 is a random number generated in a 

variety of situations, such as [0,1]. N represents the number of 

trees, and D represents the dimensionality of the problem. The 

trees dispersed to search space are called as stand. The 

performance of the trees within the stand is assessed by 

employing a specialized objective function tailored to the 

optimization problem, and the best tree within the stand is 

selected given as follows: 

𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑓 (𝑇
→

𝑖)} 𝑖 = 1,2,… ,𝑁       (2) 

Where 𝐵 represents the best tree within the stand, the best 

tree is picked from the stand because there are two solution 

update mechanisms in TSA. The selection of this equation is 

performed by using the ST parameter of TSA. While creating 

seeds for each tree, either the best tree and a neighbor tree or 

parent tree and a neighbor tree is used in the TSA algorithm. 

The quantity of seeds falls within a predetermined range set 

for the algorithm in the initial study. In the previous study, this 

range is suggested as 10% to 25% of the number of trees 

within the stand. For instance, if the stand comprises 10 trees, 

each tree generates a minimum of 1 and a maximum of 3 

seeds, with floating numbers rounded up. Following the 

explanations provided, the seeds are generated using the 

procedure outlined in Figure 1, and the operational diagram of 

TSA is depicted in Figure 2. 

In Figure 1., 𝑇𝑟,𝑗 represents the jth dimension of the rth 

tree randomly chosen from the stand, 𝑆𝑘,𝑗 indicates the jth 

dimension of 𝐾𝑡ℎ seed generated for ith tree, 𝛼𝑖,𝑗 denotes the 

scaling factor randomly obtained from a variety of situations 

such as [0,1], ST is selected within the interval of [0,1], and 

rnd is randomly produced within the range of [0,1]. If ST is 

selected as 0, more global search capability for TSA is 

obtained. If it is selected as 1, the convergence speed of TSA 

is improved, but effectively searching the solution space is 

reduced in TSA. Therefore, this control parameter is adjusted 

and selected depending on the problem characteristics. 

3. Proposed Binary Versions of TSA 
The TSA algorithm is proposed to solve continuous 

optimization problems, as seen from the explanations and 

equations in Section 2. If an optimization problem whose 

solution space is binary-structured is tried to solve by TSA, it 

should be adapted to address this category of problems. In this 

research, three approaches are used to solve this type of 

problem. Two of them use a conversion (Sigmoid and mod 

function). In these methods, the trees are distributed across the 

continuous solution space, as depicted in Figure 1, through the 

seed production mechanism as works with continuous values. 

However, before the objective function is evaluated, the 

continuous values represented by the trees or seeds are 

converted to binary values. The third approach uses the 

exclusive or – XOR – logic operator to obtain candidate 

solutions (seeds) for the trees. This method works on binary 

structured solution space, and it does not use any conversion. 

3.1. Sigmoid function-based binary TSA 

The sigmoid function, as defined in Equation 3, is 

employed to derive probability values for conversion. 

𝑃𝑖,𝑗 =
1

1+𝑒
−𝑇𝑖,𝑗

      (3) 

When Pij exceeds 0.5, a temporary array of decision 

variables is instantiated, with its jth dimension being initialized 

to 0 before the evaluation of the objective function. These 

procedures for each tree in the initialization and seeds during 

the iteration are performed to adapt TSA to binary 

optimization. 

3.2. Modulo function-based binary TSA 

Similar to the application of the sigmoid function in TSA, 

the conversion process, represented in Equation 4, utilizes 

modulo operation with base 2 to transform continuous 

solutions into their binary counterparts. 

 
Fig. 2 The solution of the working diagram of TSA [16]

if (rnd<ST) 

𝑆𝑘,𝑗 = 𝑇𝑖,𝑗 + 𝛼𝑖,𝑗 × (𝐵𝑗 − 𝑇𝑟,𝑗)  

else 

𝑆𝑘,𝑗 = 𝑇𝑖,𝑗 + 𝛼𝑖,𝑗 × (𝑇𝑖,𝑗 − 𝑇𝑟,𝑗)  
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𝐵𝑆𝑖,𝑗 = 𝑚𝑜𝑑(𝑎𝑏𝑠(⌊𝑇𝑖,𝑗⌋), 2)         (4) 

In this context, BSij represents the binary solution 

acquired for Tij through a rounding operation downwards, 

where abs denote the absolute function. The fitness of Tij is 

determined by evaluating the objective function pertinent to 

the binary optimization problem, utilizing the BSij binary 

array of decision variables. 
 

3.3. Xor-based binary TSA 

Exclusive or –xor logic operator accepts two inputs, 

which are binary, and if they are the same, 0 output is 

produced. Otherwise, it produces 1 as output. To use this 

operation in TSA to solve binary problems, trees in the stand 

are scattered to binary solution space and seeds are produced 

for each tree given as follows: 

𝑆𝑘,𝑗 = {
𝑥𝑜𝑟(𝐵𝑗 , 𝑇𝑟,𝑗), 𝑆𝑇 < 𝑟𝑛𝑑

𝑥𝑜𝑟(𝑇𝑖,𝑗, 𝑇𝑟,𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (5) 

The difference between the xor-based approach from the 

other two approaches is that in xor-based TSA, the operation 

is conducted within the binary solution space, where trees and 

seeds symbolize binary values rather than continuous values. 
 

4. Experimental Setup 
To assess the performance and accuracy of the three 

distinct versions of TSA, the authors employed the 

uncapacitated facility location test suite consisting of 12 test 

problems sourced from the OR-Library [15]. Within the test 

suite, four problems (Cap71-74) are categorized as small-

sized, while eight problems (Cap101-104 and Cap131-134) 

are medium-sized. The sizes and the costs of the optimal 

solutions are outlined in Table 1. To ensure consistency in 

comparison, a population size of 40 is adopted across all 

experiments.  

The termination criterion for each experiment is defined 

as the maximum number of function evaluations (Max_FEs), 

set at 80,000. Different binary functions and varying search 

tendencies (STs) are employed as control parameters of TSA 

in each experimental study. These experiments are conducted 

30 times to address the UFLP.  

The results, including best, worst values, and mean, along 

with standard deviations created from these runs, are 

documented in Tables 2-10. The accuracy and robustness of 

the proposed TSA variation are evaluated based on the mean 

and standard deviations, respectively, enabling a comparative 

analysis. 

Table 1. Outlines the description of the test suite 

Problem  

name 

Problem  

size 

Cost of   

the optimal solution 

Cap71 16x50 932,615.75 

Cap72 16x50 977,799.40 

Cap73 16x50 1,010,641.45 

Cap74 16x50 1,034,976.98 

Cap101 25x50 796,648.44 

Cap102 25x50 854,704.20 

Cap103 25x50 893,782.11 

Cap104 25x50 928,941.75 

Cap131 50x50 793,439.56 

Cap132 50x50 851,495.33 

Cap133 50x50 893,076.71 

Cap134 50x50 928,941.75 

Table 2. The test results of small-sized problems for ST=0.1. 

1-70 Mean Std.Dev. Best Worst 

Cap 

71 

TSA-Mode 9.33E+05 4.36E+02 9.33E+05 9.34E+05 

TSA-XOR 9.37E+05 2.59E+03 9.33E+05 9.42E+05 

TSA-Sig 9.36E+05 4.74E-10 9.36E+05 9.36E+05 

Cap 

72 

TSA-Mode 9.78E+05 4.13E+02 9.78E+05 9.79E+05 

TSA-XOR 9.84E+05 1.58E+03 9.80E+05 9.87E+05 

TSA-Sig 9.82E+05 4.74E-10 9.82E+05 9.82E+05 

Cap 

73 

TSA-Mode 1.01E+06 4.74E-10 1.01E+06 1.01E+06 

TSA-XOR 1.01E+06 2.38E+03 1.01E+06 1.02E+06 

TSA-Sig 1.01E+06 4.74E-10 1.01E+06 1.01E+06 

Cap 

74 

TSA-Mode 1.03E+06 3.55E-10 1.03E+06 1.03E+06 

TSA-XOR 1.05E+06 6.46E+03 1.03E+06 1.06E+06 

TSA-Sig 1.04E+06 4.74E-10 1.04E+06 1.04E+06 
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Table 3. The test results of small-sized problems for ST=0.2 

2-70 Mean Std.Dev. Best Worst 

Cap 

71 

TSA-Mode 9.33E+05 5.37E+02 9.33E+05 9.34E+05 

TSA-XOR 9.38E+05 1.66E+03 9.34E+05 9.42E+05 

TSA-Sig 9.36E+05 4.74E-10 9.36E+05 9.36E+05 

Cap 

72 

TSA-Mode 9.78E+05 1.97E+02 9.78E+05 9.79E+05 

TSA-XOR 9.82E+05 2.10E+03 9.79E+05 9.86E+05 

TSA-Sig 9.82E+05 4.74E-10 9.82E+05 9.82E+05 

Cap 

73 

TSA-Mode 1.01E+06 4.74E-10 1.01E+06 1.01E+06 

TSA-XOR 1.01E+06 2.16E+03 1.01E+06 1.02E+06 

TSA-Sig 1.01E+06 4.74E-10 1.01E+06 1.01E+06 

Cap 

74 

TSA-Mode 1.03E+06 3.55E-10 1.03E+06 1.03E+06 

TSA-XOR 1.05E+06 5.60E+03 1.03E+06 1.06E+06 

TSA-Sig 1.04E+06 4.74E-10 1.04E+06 1.04E+06 

Table 4. The test results of small-sized problems for ST=0.3.  

3-70 Mean Std.Dev. Best Worst 

Cap 

71 

TSA-Mode 9.33E+05 5.31E+02 9.33E+05 9.34E+05 

TSA-XOR 9.37E+05 2.08E+03 9.34E+05 9.40E+05 

TSA-Sig 9.36E+05 4.74E-10 9.36E+05 9.36E+05 

Cap 

72 

TSA-Mode 9.78E+05 3.76E+02 9.78E+05 9.79E+05 

TSA-XOR 9.82E+05 1.63E+03 9.79E+05 9.85E+05 

TSA-Sig 9.82E+05 4.74E-10 9.82E+05 9.82E+05 

Cap 

73 

TSA-Mode 1.01E+06 4.74E-10 1.01E+06 1.01E+06 

TSA-XOR 1.01E+06 2.25E+03 1.01E+06 1.02E+06 

TSA-Sig 1.01E+06 4.74E-10 1.01E+06 1.01E+06 

Cap 

74 

TSA-Mode 1.03E+06 3.55E-10 1.03E+06 1.03E+06 

TSA-XOR 1.05E+06 4.99E+03 1.03E+06 1.06E+06 

TSA-Sig 1.04E+06 4.74E-10 1.04E+06 1.04E+06 

Table 5. The test results of medium-sized problems for ST=0.1.  

1-100 Mean Std.Dev. Best Worst 

Cap 

101 

TSA-Mode 8.02E+05 1.20E+03 7.99E+05 8.04E+05 

TSA-XOR 8.09E+05 2.24E+03 8.01E+05 8.13E+05 

TSA-Sig 8.07E+05 1.91E+03 8.03E+05 8.08E+05 

Cap 

102 

TSA-Mode 8.58E+05 1.11E+03 8.55E+05 8.59E+05 

TSA-XOR 8.70E+05 3.54E+03 8.61E+05 8.76E+05 

TSA-Sig 8.61E+05 1.88E+03 8.58E+05 8.65E+05 

Cap 

103 

TSA-Mode 8.95E+05 1.18E+03 8.94E+05 8.98E+05 

TSA-XOR 9.16E+05 4.66E+03 9.05E+05 9.23E+05 

TSA-Sig 8.99E+05 2.10E+03 8.96E+05 9.02E+05 

Cap 

104 

TSA-Mode 9.31E+05 2.59E+03 9.29E+05 9.37E+05 

TSA-XOR 9.75E+05 8.64E+03 9.57E+05 9.91E+05 

TSA-Sig 9.42E+05 2.23E+03 9.38E+05 9.45E+05 
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Table 6. The test results of medium-sized problems for ST=0.2.  

2-100 Mean Std.Dev. Best Worst 

Cap 

101 

TSA-Mode 8.01E+05 1.50E+03 7.98E+05 8.04E+05 

TSA-XOR 8.09E+05 2.07E+03 8.05E+05 8.12E+05 

TSA-Sig 8.06E+05 2.32E+03 8.03E+05 8.09E+05 

Cap 

102 

TSA-Mode 8.58E+05 1.49E+03 8.55E+05 8.61E+05 

TSA-XOR 8.69E+05 4.51E+03 8.59E+05 8.74E+05 

TSA-Sig 8.61E+05 3.18E+03 8.56E+05 8.65E+05 

Cap 

103 

TSA-Mode 8.96E+05 1.54E+03 8.94E+05 8.99E+05 

TSA-XOR 9.16E+05 5.76E+03 9.00E+05 9.25E+05 

TSA-Sig 9.00E+05 1.68E+03 8.98E+05 9.03E+05 

Cap 

104 

TSA-Mode 9.31E+05 2.57E+03 9.29E+05 9.36E+05 

TSA-XOR 9.71E+05 1.14E+04 9.38E+05 9.88E+05 

TSA-Sig 9.41E+05 4.97E+03 9.33E+05 9.48E+05 

Table 7. The test results of medium-sized problems for ST=0.3.  

3-100 Mean Std.Dev. Best Worst 

Cap 

101 

TSA-Mode 8.02E+05 1.61E+03 7.98E+05 8.05E+05 

TSA-XOR 8.08E+05 2.25E+03 8.02E+05 8.11E+05 

TSA-Sig 8.06E+05 9.41E+02 8.05E+05 8.08E+05 

Cap 

102 

TSA-Mode 8.58E+05 1.32E+03 8.55E+05 8.61E+05 

TSA-XOR 8.69E+05 3.13E+03 8.62E+05 8.75E+05 

TSA-Sig 8.63E+05 9.99E+02 8.61E+05 8.64E+05 

Cap 

103 

TSA-Mode 8.96E+05 1.44E+03 8.94E+05 8.98E+05 

TSA-XOR 9.16E+05 4.83E+03 9.05E+05 9.24E+05 

TSA-Sig 9.01E+05 1.17E+03 8.99E+05 9.03E+05 

Cap 

104 

TSA-Mode 9.31E+05 2.45E+03 9.29E+05 9.37E+05 

TSA-XOR 9.70E+05 6.53E+03 9.55E+05 9.82E+05 

TSA-Sig 9.40E+05 2.92E+03 9.35E+05 9.44E+05 

Table 8. The test results of large-sized problems for ST=0.1. 

1-130 Mean Std.Dev. Best Worst 

Cap 

131 

TSA-Mode 8.18E+05 3.49E+03 8.09E+05 8.23E+05 

TSA-XOR 8.47E+05 4.05E+03 8.38E+05 8.52E+05 

TSA-Sig 8.26E+05 3.29E+03 8.21E+05 8.32E+05 

Cap 

132 

TSA-Mode 8.83E+05 5.47E+03 8.63E+05 8.90E+05 

TSA-XOR 9.38E+05 7.20E+03 9.18E+05 9.49E+05 

TSA-Sig 8.95E+05 6.20E+03 8.86E+05 9.02E+05 

Cap 

133 

TSA-Mode 9.28E+05 8.42E+03 9.07E+05 9.42E+05 

TSA-XOR 1.02E+06 1.02E+04 1.00E+06 1.04E+06 

TSA-Sig 9.15E+05 9.31E+03 9.06E+05 9.31E+05 

Cap 

134 

TSA-Mode 9.88E+05 9.89E+03 9.69E+05 1.00E+06 

TSA-XOR 1.14E+06 2.03E+04 1.09E+06 1.17E+06 

TSA-Sig 9.64E+05 1.27E+04 9.49E+05 9.81E+05 
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Table 9. The test results of large-sized problems for ST=0.2. 

2-130 Mean Std.Dev. Best Worst 

Cap 

131 

TSA-Mode 8.19E+05 3.86E+03 8.10E+05 8.25E+05 

TSA-XOR 8.47E+05 4.61E+03 8.31E+05 8.53E+05 

TSA-Sig 8.28E+05 2.03E+03 8.25E+05 8.34E+05 

Cap 

132 

TSA-Mode 8.80E+05 5.20E+03 8.63E+05 8.87E+05 

TSA-XOR 9.40E+05 6.01E+03 9.25E+05 9.49E+05 

TSA-Sig 8.97E+05 5.60E+03 8.88E+05 9.01E+05 

Cap 

133 

TSA-Mode 9.26E+05 7.30E+03 9.11E+05 9.35E+05 

TSA-XOR 1.02E+06 1.10E+04 9.98E+05 1.04E+06 

TSA-Sig 9.23E+05 6.24E+03 9.12E+05 9.31E+05 

Cap 

134 

TSA-Mode 9.87E+05 1.07E+04 9.46E+05 1.00E+06 

TSA-XOR 1.13E+06 1.67E+04 1.10E+06 1.16E+06 

TSA-Sig 9.65E+05 1.03E+04 9.52E+05 9.86E+05 

Table 10. The test results of large-sized problems for ST=0.3. 

3-130 Mean Std.Dev. Best Worst 

Cap 

131 

TSA-Mode 8.17E+05 3.54E+03 8.09E+05 8.22E+05 

TSA-XOR 8.44E+05 5.52E+03 8.23E+05 8.52E+05 

TSA-Sig 8.24E+05 2.84E+03 8.21E+05 8.31E+05 

Cap 

132 

TSA-Mode 8.80E+05 4.77E+03 8.69E+05 8.88E+05 

TSA-XOR 9.33E+05 1.06E+04 9.09E+05 9.50E+05 

TSA-Sig 8.97E+05 3.26E+03 8.93E+05 9.02E+05 

Cap 

133 

TSA-Mode 9.27E+05 7.74E+03 9.06E+05 9.40E+05 

TSA-XOR 1.02E+06 1.16E+04 9.93E+05 1.04E+06 

TSA-Sig 9.49E+05 1.27E+04 9.27E+05 9.66E+05 

Cap 

134 

TSA-Mode 9.84E+05 9.54E+03 9.63E+05 1.00E+06 

TSA-XOR 1.13E+06 2.04E+04 1.09E+06 1.16E+06 

TSA-Sig 1.03E+06 9.69E+03 1.02E+06 1.04E+06 

 

In the comparison tables (Tables 2-10), the minimum 

mean, best, worst values and standard deviation values are 

given in bold font. The results obtained by Cap71, Cap72, 

Cap73 and Cap74 problems are presented in Tables 2, 3 and 4 

for ST=0.1, 0.2 and 0.3, respectively. As seen from Tables 2-

4, when the mode function-based TSA (TSA-Mode) is 

compared with other binary versions, this version 

demonstrates significant improvement in both solution quality 

and robustness. In general, TSA-Mode reaches the optimal 

solutions to the corresponding problems. Based on the 

standard deviations, the robustness of the TSA-Sig algorithm 

is better than that of the TSA-XOR for all of the test problems. 

When ST values are set as 0.1, 0.2 and 0.3, the similar results 

are obtained. Hence, for this particular problem group 

(Cap70s), varying the ST values does not affect the 

effectiveness of the algorithm. Table 3 displays the test results 

for small-sized problems with ST=0.2, evaluating three 

techniques: TSA-Mode, TSA-XOR, and TSA-Sig.  

It presents mean, standard deviation, best, and worst 

objective function values for each technique across problem 

instances (Cap71 to Cap74). The data reveals variations in 

performance among techniques, with TSA-Mode generally 

exhibiting slightly worse performance. Additionally, the best 

and worst objective function values illustrate the range of 

performance achieved by each technique, with TSA-Sig 

generally outperforming TSA-Mode and TSA-XOR in terms 

of mean and best values. The experimental results obtained for 

Cap101, Cap102, Cap103 and Cap104 problems are 

respectively given in Tables 5, 6 and 7 for ST=0.1, 0.2 and 

0.3. As seen from Tables 5-7, in all the test problems, the TSA-

Mode binary version is better for both solution quality and 

robustness than the others. However, TSA-Mode could not 

find the optimal solutions to any problem, although it is closer 

to the optimal values. The robustness of the TSA-Sig 

algorithm is similar to that of the TSA-XOR for all the test 

problems. TSA-XOR has the worst performance with regard 



Mustafa Servet Kiran et al. / IJETT, 72(4), 315-323, 2024 

 

322 

to mean and standard deviation values when compared with 

all the binary versions. When ST values are set from 0.1 to 0.3 

for solving UFLP, the obtained results are closer to each other. 

The experimental results obtained by Cap131, Cap132, 

Cap133 and Cap134 problems are respectively given in Tables 

8, 9 and 10 for ST=0.1, 0.2 and 0.3. As seen from Tables 8-

10, the TSA-Mode binary version is generally better for both 

solution quality and robustness than the others. However, 

TSA-Sig is better than TSA-Mode for Cap 134 problem under 

ST=0.1 and 0.2. For all of the Cap 130 problems, any binary 

versions of TSA could not find the optimal solutions. The 

solution quality of the TSA-Sig algorithm is better than that of 

the TSA-XOR for all the test problems. In addition, TSA-

XOR has the worst performance among other binary versions, 

according to Tables 8-10. When ST values are assigned to 0.1, 

0.2 and 0.3 for solving UFLP, the obtained results are closer 

to each other. Table 8 presents test results for solving large-

sized problems using three different techniques (TSA-Mode, 

TSA-XOR, and TSA-Sig) with a parameter value of ST=0.1. 

The Mean objective function value of TSA-Mode is 

8.18E+05, with a standard deviation of 3.49E+03. The best 

objective function value obtained is 8.09E+05, and the worst 

is 8.23E+05. In addition, the TSA-XOR Mean objective 

function value is 8.47E+05, with a standard deviation of 

4.05E+03. The best objective function value obtained is 

8.38E+05, and the worst is 8.52E+05. Finally, the TSA-Sig 

Mean objective function value is 8.26E+05, with a standard 

deviation of 3.29E+03. The best objective function value 

obtained is 8.21E+05, and the worst is 8.32E+05. Table 9 

outlines the test results for large-sized p0072oblems with 

ST=0.2, comparing three techniques such as TSA-Mode, 

TSA-XOR, and TSA-Sig cross problem instances (Cap131 to 

Cap134). The result reveals slight variations in mean values 

across techniques, with TSA-Sig generally performing 

slightly better. Standard deviation indicates variability, while 

best and worst values show the range of performance. Based 

on the experimental results obtained by the proposed methods, 

promising results are obtained in solving uncapacitated 

facility location problems.  

5. Results and Discussion 
Results can be evaluated due to several parameters 

involved in the tackled optimization problem. According to 

the problem dimension parameter, which is represented by the 

number of facilities, as seen from Table 2, for Cap71, Cap72, 

Cap73, and Cap74 problems, all methods exhibit similar 

performance. However, as the number of facilities increases 

in Cap101, Cap102, Cap103, Cap104, Cap131, Cap132, and 

Cap133 problems, TSA-Sig outperforms TSA-XOR. In 

contrast, TSA-Mode outperforms both of them since it 

achieves the best cost with a relatively considerable difference 

from costs obtained by TSA-XOR and TSA- sig, as observed 

in Tables 5 and 8.  

As for the Search Tendency parameter (ST) introduced by 

TSA, Tables 2, 3, 4, 5, 6 and 7 show that for different ST 

values (0.1,0.2 and 0.3), the best cost values of the three 

methods are nearly the same in Cap71, Cap72, Cap73, Cap74, 

Cap101, Cap102, Cap103 and Cap104 problems. Also, for 

Cap131 and Cap132, Tables 8, 9 and 10 reveal that there is no 

observed change in all method's performance due to the 

different values of ST. At the same time, for Cap 133 and 

Cap134 problems, TSA-XOR obtains better cost as ST 

increases, in contrast to the STA-Sig method, in which cost 

value decreases with ST increment. 

Regarding the standard deviation value of all the methods, 

it has been noted that TSA-Mode and TSA-Sig are more 

robust than TSA-XOR for all cases since in Cap71, Cap72, 

and Cap73 problems, TSA-Sig was of the best robustness. 

While, the TSA-Mode method was more robust in Cap74, as 

it is seen in Tables 2, 3 and 4. However, for Cap101, Cap102, 

Cap103 and Cap104 problems, TSA-Mode was the best robust 

method as seen in Tables 5, 6 and 7.  

As for Cap131, Cap132, Cap133 and Cap134 problems, 

close standard deviations were noted for TSA-Mode and TSA-

Sig methods, though TSA-Mode achieved better standard 

deviations in Cap132, Cap133 and Cap134 problems, as seen 

in Tables 8, 9 and 10.In conclusion, based on the evaluations 

conducted above, it can be inferred that the TSA-Mode 

method surpasses TSA-XOR and TSA-Sig in optimizing the 

UFLP problem. The TSA-Mode method has demonstrated 

robustness and consistently achieved the lowest costs across 

all instances of the UFLP problem addressed. Based on these 

results, the binary versions of TSA produce promising and 

competitive results in solving UFLPs in terms of solution 

quality and robustness.  

6. Conclusion 
In this paper, the authors examined the adaptation of TSA 

for addressing binary optimization problems. Three variations 

of the TSA algorithm were proposed, and their efficacy was 

evaluated on uncapacitated facility location problems of 

varying sizes. The performance of these proposed methods 

was analyzed across different ST values. The experimental 

results revealed promising outcomes achieved by these 

methods. Overall, the findings suggest that TSA variants 

designed for binary optimization hold the potential for 

effectively addressing a wide range of binary optimization 

problems. 
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