
International Journal of Engineering Trends and Technology Volume 72 Issue 4, 315-323, April 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I4P132 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Three Binary Versions of Tree-Seed Algorithm for

Binary Optimization

Yahye Abukar Ahmed1, Mustafa Servet Kiran2*, Mohamed Omar Abdullahi1, Abdukadir Dahir Jimale1, Abdulaziz

Yasin Nageye1, Ali Abdi Jama1

1Faculty of Computing, SIMAD University, Mogadishu, Somalia.
2Department of Computer Engineering, Faculty of Engineering, Selcuk University, Konya- Turkey

*Corresponding Author : mskiran@selcuk.edu.tr

Received: 25 October 2023 Revised: 09 February 2024 Accepted: 01 April 2024 Published: 24 April 2024

Abstract - This study explores the adaptation of the Tree-Seed Algorithm (TSA), a population-based optimization method, for

solving binary optimization problems. Initially designed for problems featuring continuous solution spaces, TSA is adjusted to

address binary-structured optimization challenges. Three distinct approaches, namely the sigmoid function, modulo function,

and xor logic gate, are employed to address TSA for binary optimization problem-solving. The efficacy of these methods is

evaluated through experimentation on Uncapacitated Facility Location Problems (UFLPs), representative pure binary problems

from existing literature. A comprehensive analysis is conducted using a selection of well-known small, medium, and large-sized

UFLP instances to assess the performances and the impact of TSA's control parameters. Comparative analysis of obtained

results reveals promising outcomes achieved by the proposed algorithm.

Keywords - Sigmoid function, UFLP, Modulo function, Binary optimization, Tree-seed algorithm, x-or logic gate.

1. Introduction
Recently, numerous optimization algorithms, such as

populations, have emerged to address optimization problems

with diverse characteristics. Among these algorithms, the

Tree-Seed Algorithm (TSA) has attracted attention for its

effectiveness in resolving such optimization challenges. TSA

is characterized as an algorithm that operates through iterative

processes and is suggested for addressing unconstrained

continuous optimization challenges. In the basic variant of

TSA, the key control parameters are analysed, and its efficacy

was compared with the firefly algorithm [4], artificial bee

colony (ABC) [2] [3], particle swarm optimization (PSO) [1],

and bat algorithm [5]. In another study, the TSA was applied

to address the pressure vessel design problem, which is a

constrained optimization problem. However, despite TSA's

demonstrated ability to handle constrained or unconstrained

optimization problems, a notable research gap exists in its

adaptation for solving binary optimization problems. Such

problems possess a binary-structured solution space, where

decision variables are constrained to binary values of 0 or 1.

While several population-based heuristic methods have been

modified for binary optimization — employing approaches

like the sigmoid function in binary PSO [6], modulo

operations in PSO [7] and ABC [2] [3], and XOR-based logic

gates in ABC [2] [3] — the exploration of TSA variants for

binary optimization remains relatively unexplored.

This gap in the literature highlights the need for novel

approaches to adapt TSA specifically for binary optimization

problems, addressing challenges such as solution

representation, exploration-exploitation balance, and

convergence dynamics unique to this problem domain. By

developing and evaluating modified versions of TSA tailored

for binary optimization, authors aim to fill this research gap

and contribute to the advancement of evolutionary

computation techniques in solving binary optimization

problems. This study aims to bridge this gap by proposing

three modified versions of TSA tailored specifically for binary

optimization problems. Our focus is on addressing the

Uncapacitated Facility Location Problem (UFLP), a classical

binary optimization problem with a benchmark dataset

available in the literature, thereby facilitating the performance

evaluation of our proposed TSA variants. The paper is

structured as follows: Section, I providing an overview of the

research objectives; a brief review of the literature on binary

optimization and the mathematical model of the problem.

Section II demonstrates the Basic and Modified Versions of

TSA. Section III elaborates on the proposed binary version of

the Tree Seed Algorithm (TSA). Section IV details the

experimental setup such as parameter settings and evaluation

criteria. Section V provides a comprehensive discussion of the

results obtained from the experiments.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mustafa Servet Kiran et al. / IJETT, 72(4), 315-323, 2024

316

1.1. Related Work

This section illustrates the literature and the related work

of the study. The population-based swarm intelligence

methods have been developed with inspiration from natural

phenomena. Tree-Seed Algorithm is also invented by the trees

and their seeds in nature, and the tree collection is named stand

instead of population or swarm, but the working of the stand

is similar to the working of the swarm. The aim of the stand is

to maintain and sustain the existence of the trees by producing

seeds from the trees. Swarm intelligence refers to the field of

study focused on collective behaviours emerging from the

local interactions among many individuals who coordinate

their activities through decentralized systems [8-10].

In the literature, the most prominent examples of swarm

intelligence algorithms include particle swarm optimization

(PSO), Ant Colony Optimization (ACO), and the Artificial

Bee Colony (ABC) algorithm. PSO, a stochastic, population-

based technique conceived by Dr. Eberhart and Dr. Kennedy

in 1995, draws inspiration from natural phenomena such as

bird flocking or fish schooling [1]. Ant colony optimization,

introduced by M. Dorigo and collaborators in the early 1990s,

represents a pioneering nature-inspired metaheuristic

approach for addressing Combinatorial Optimization (CO)

challenges [11].

ACO achieves finding an optimal solution for the search

problems through the inspiring source of ants' foraging

behavior. ABC has been suggested to solve continuous

optimization problems by inspiring waggle dance and food

search behaviors of honey bees [2], [3]. One of the recently

introduced algorithms is the Tree-Seed Algorithm (TSA),

which draws inspiration from natural processes such as the

production of trees and seeds. This algorithm was developed

in 2015. TSA addresses the interaction between trees and their

seeds as they grow in a specific area of land.

According to nature way, trees grow and spread on the

ground over their seeds. These seeds are cultivated over time

and generate new trees. The trees and seeds' location is

regarded as an n-dimensional solution space corresponding

with the possible solution of an optimization problem. The

search starts with sowing the trees into the ground. During the

iterations, the number of seeds of each tree is produced. TSA

was successfully applied to solve constrained and

unconstrained optimization problems and multilevel

thresholding problems.

Many swarm intelligence methodologies have emerged in

recent years as solutions for tackling Operational Research

(OR) dilemmas, including the Uncapacitated Facility Location

Problem (UFLP), which stands out as one of the most

intensively researched discrete location predicaments.

Concerned with the optimal placement of an undetermined

number of facilities to minimize transportation costs [7], [12],

[13].

1.2. Mathematical Model of UFLP

The Uncapacitated Facility Location Problem (UFLP)

entails a scenario whereby a set of customer locations,

identified as m, needs to be served by a selection of potential

facilities n. Each facility incurs a fixed cost fcj, and there

exists a transportation cost cij associated with serving

customer I from facility j. Notably, there are no capacity

constraints imposed on any candidate facility, and each

customer's entire demand must be assigned to a single facility

[14]. The objective of this problem is to determine the optimal

number of facilities to be established and to identify those

facilities in order to minimize the total cost. The mathematical

representation of this problem can be articulated as follows:

𝑍 = 𝑚𝑖𝑛(∑ ∑ 𝑐𝑖,𝑗 . 𝑥𝑖,𝑗 + ∑ 𝑓𝑐𝑗 . 𝑦𝑗
𝑛
𝑗=1

𝑛
𝑗=1

𝑚
𝑖=1) (1)

subject to:
∑ 𝑥𝑖,𝑗 = 1𝑛
𝑗=1 ∀𝑖𝑖𝑛𝑚 (2)

0 ≤ 𝑥𝑖,𝑗 ≤ 1 (3)

In the provided context, where i = 1...m and j = 1, ...,n, xij

represents the quantity supplied from facility I to customer j,

and yj indicates whether facility j is established (yj = 1) or not

(yj = 0). Equation 2 ensures that all customer demands are

fulfilled by at least one operational facility, while Equation 3

maintains the integrity of the solution. After implementing the

UFL problem into specific algorithms, researchers use the

ORLIB dataset, which is one of the most widely used UFLP

benchmark instances, to evaluate the performance and

accuracy of their algorithms. ORLIB instances are part of OR-

Library introduced by J.E Beasley in 1996 for a variety of

Operations Research (OR) problems [15]. This test suite

comprises three sets of benchmark problems m×n, categorized

by their dimensions, where m represents the number of

customers and n denotes the number of facilities. Specifically,

there are four small-sized problems labeled as Cap71–74 and

four medium-sized problems labeled as Cap101–104. The

remaining four problems, denoted as Cap131–134, are

categorized as large-sized in this investigation. This problem

set is selected to investigate the performance of binary

versions of TSAs because Cap problems are pure binary

problems, and there are no floating decision variables in the

problem model. The problem is also a well-known problem,

and the effectiveness of many swarms or evolutionary

computation methods are analyzed in solving these problems.

2. The Foundational Version of the Tree-Seed

Algorithm
In the fundamental version of TSA, trees and their seeds

symbolize potential solutions to the optimization problem.

After control parameters (population size, upper and lower

bound for the various seeds and search tendency – ST) are set,

the trees are scattered to the search space of the problem by

using the equation given as follows:

𝑇𝑖,𝑗 = 𝐿𝑗,𝑚𝑖𝑛 + 𝑟𝑖,𝑗(𝐻𝑗,𝑚𝑎𝑥 − 𝐿𝑗,𝑚𝑖𝑛),𝑗 = 1,2, … ,𝐷𝑎𝑛𝑑𝑖 =

1,2,… , 𝑁 (1)

Mustafa Servet Kiran et al. / IJETT, 72(4), 315-323, 2024

317

Fig. 1 The solution update procedure of TSA using the ST parameter

Where, 𝑇𝑖,𝑗 represents the jth dimension of ith tree, 𝐿𝑗,min

is the lower bound of search space, 𝐻𝑗,max indicates the upper

bound of search space, 𝑟𝑖,𝑗 is a random number generated in a

variety of situations, such as [0,1]. N represents the number of

trees, and D represents the dimensionality of the problem. The

trees dispersed to search space are called as stand. The

performance of the trees within the stand is assessed by

employing a specialized objective function tailored to the

optimization problem, and the best tree within the stand is

selected given as follows:

𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑓 (𝑇
→

𝑖)} 𝑖 = 1,2,… ,𝑁 (2)

Where 𝐵 represents the best tree within the stand, the best

tree is picked from the stand because there are two solution

update mechanisms in TSA. The selection of this equation is

performed by using the ST parameter of TSA. While creating

seeds for each tree, either the best tree and a neighbor tree or

parent tree and a neighbor tree is used in the TSA algorithm.

The quantity of seeds falls within a predetermined range set

for the algorithm in the initial study. In the previous study, this

range is suggested as 10% to 25% of the number of trees

within the stand. For instance, if the stand comprises 10 trees,

each tree generates a minimum of 1 and a maximum of 3

seeds, with floating numbers rounded up. Following the

explanations provided, the seeds are generated using the

procedure outlined in Figure 1, and the operational diagram of

TSA is depicted in Figure 2.

In Figure 1., 𝑇𝑟,𝑗 represents the jth dimension of the rth

tree randomly chosen from the stand, 𝑆𝑘,𝑗 indicates the jth

dimension of 𝐾𝑡ℎ seed generated for ith tree, 𝛼𝑖,𝑗 denotes the

scaling factor randomly obtained from a variety of situations

such as [0,1], ST is selected within the interval of [0,1], and

rnd is randomly produced within the range of [0,1]. If ST is

selected as 0, more global search capability for TSA is

obtained. If it is selected as 1, the convergence speed of TSA

is improved, but effectively searching the solution space is

reduced in TSA. Therefore, this control parameter is adjusted

and selected depending on the problem characteristics.

3. Proposed Binary Versions of TSA
The TSA algorithm is proposed to solve continuous

optimization problems, as seen from the explanations and

equations in Section 2. If an optimization problem whose

solution space is binary-structured is tried to solve by TSA, it

should be adapted to address this category of problems. In this

research, three approaches are used to solve this type of

problem. Two of them use a conversion (Sigmoid and mod

function). In these methods, the trees are distributed across the

continuous solution space, as depicted in Figure 1, through the

seed production mechanism as works with continuous values.

However, before the objective function is evaluated, the

continuous values represented by the trees or seeds are

converted to binary values. The third approach uses the

exclusive or – XOR – logic operator to obtain candidate

solutions (seeds) for the trees. This method works on binary

structured solution space, and it does not use any conversion.

3.1. Sigmoid function-based binary TSA

The sigmoid function, as defined in Equation 3, is

employed to derive probability values for conversion.

𝑃𝑖,𝑗 =
1

1+𝑒
−𝑇𝑖,𝑗

 (3)

When Pij exceeds 0.5, a temporary array of decision

variables is instantiated, with its jth dimension being initialized

to 0 before the evaluation of the objective function. These

procedures for each tree in the initialization and seeds during

the iteration are performed to adapt TSA to binary

optimization.

3.2. Modulo function-based binary TSA

Similar to the application of the sigmoid function in TSA,

the conversion process, represented in Equation 4, utilizes

modulo operation with base 2 to transform continuous

solutions into their binary counterparts.

Fig. 2 The solution of the working diagram of TSA [16]

if (rnd<ST)

𝑆𝑘,𝑗 = 𝑇𝑖,𝑗 + 𝛼𝑖,𝑗 × (𝐵𝑗 − 𝑇𝑟,𝑗)

else

𝑆𝑘,𝑗 = 𝑇𝑖,𝑗 + 𝛼𝑖,𝑗 × (𝑇𝑖,𝑗 − 𝑇𝑟,𝑗)

Mustafa Servet Kiran et al. / IJETT, 72(4), 315-323, 2024

318

𝐵𝑆𝑖,𝑗 = 𝑚𝑜𝑑(𝑎𝑏𝑠(⌊𝑇𝑖,𝑗⌋), 2) (4)

In this context, BSij represents the binary solution

acquired for Tij through a rounding operation downwards,

where abs denote the absolute function. The fitness of Tij is

determined by evaluating the objective function pertinent to

the binary optimization problem, utilizing the BSij binary

array of decision variables.

3.3. Xor-based binary TSA

Exclusive or –xor logic operator accepts two inputs,

which are binary, and if they are the same, 0 output is

produced. Otherwise, it produces 1 as output. To use this

operation in TSA to solve binary problems, trees in the stand

are scattered to binary solution space and seeds are produced

for each tree given as follows:

𝑆𝑘,𝑗 = {
𝑥𝑜𝑟(𝐵𝑗 , 𝑇𝑟,𝑗), 𝑆𝑇 < 𝑟𝑛𝑑

𝑥𝑜𝑟(𝑇𝑖,𝑗, 𝑇𝑟,𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

The difference between the xor-based approach from the

other two approaches is that in xor-based TSA, the operation

is conducted within the binary solution space, where trees and

seeds symbolize binary values rather than continuous values.

4. Experimental Setup
To assess the performance and accuracy of the three

distinct versions of TSA, the authors employed the

uncapacitated facility location test suite consisting of 12 test

problems sourced from the OR-Library [15]. Within the test

suite, four problems (Cap71-74) are categorized as small-

sized, while eight problems (Cap101-104 and Cap131-134)

are medium-sized. The sizes and the costs of the optimal

solutions are outlined in Table 1. To ensure consistency in

comparison, a population size of 40 is adopted across all

experiments.

The termination criterion for each experiment is defined

as the maximum number of function evaluations (Max_FEs),

set at 80,000. Different binary functions and varying search

tendencies (STs) are employed as control parameters of TSA

in each experimental study. These experiments are conducted

30 times to address the UFLP.

The results, including best, worst values, and mean, along

with standard deviations created from these runs, are

documented in Tables 2-10. The accuracy and robustness of

the proposed TSA variation are evaluated based on the mean

and standard deviations, respectively, enabling a comparative

analysis.

Table 1. Outlines the description of the test suite

Problem

name

Problem

size

Cost of

the optimal solution

Cap71 16x50 932,615.75

Cap72 16x50 977,799.40

Cap73 16x50 1,010,641.45

Cap74 16x50 1,034,976.98

Cap101 25x50 796,648.44

Cap102 25x50 854,704.20

Cap103 25x50 893,782.11

Cap104 25x50 928,941.75

Cap131 50x50 793,439.56

Cap132 50x50 851,495.33

Cap133 50x50 893,076.71

Cap134 50x50 928,941.75

Table 2. The test results of small-sized problems for ST=0.1.

1-70 Mean Std.Dev. Best Worst

Cap

71

TSA-Mode 9.33E+05 4.36E+02 9.33E+05 9.34E+05

TSA-XOR 9.37E+05 2.59E+03 9.33E+05 9.42E+05

TSA-Sig 9.36E+05 4.74E-10 9.36E+05 9.36E+05

Cap

72

TSA-Mode 9.78E+05 4.13E+02 9.78E+05 9.79E+05

TSA-XOR 9.84E+05 1.58E+03 9.80E+05 9.87E+05

TSA-Sig 9.82E+05 4.74E-10 9.82E+05 9.82E+05

Cap

73

TSA-Mode 1.01E+06 4.74E-10 1.01E+06 1.01E+06

TSA-XOR 1.01E+06 2.38E+03 1.01E+06 1.02E+06

TSA-Sig 1.01E+06 4.74E-10 1.01E+06 1.01E+06

Cap

74

TSA-Mode 1.03E+06 3.55E-10 1.03E+06 1.03E+06

TSA-XOR 1.05E+06 6.46E+03 1.03E+06 1.06E+06

TSA-Sig 1.04E+06 4.74E-10 1.04E+06 1.04E+06

Mustafa Servet Kiran et al. / IJETT, 72(4), 315-323, 2024

319

Table 3. The test results of small-sized problems for ST=0.2

2-70 Mean Std.Dev. Best Worst

Cap

71

TSA-Mode 9.33E+05 5.37E+02 9.33E+05 9.34E+05

TSA-XOR 9.38E+05 1.66E+03 9.34E+05 9.42E+05

TSA-Sig 9.36E+05 4.74E-10 9.36E+05 9.36E+05

Cap

72

TSA-Mode 9.78E+05 1.97E+02 9.78E+05 9.79E+05

TSA-XOR 9.82E+05 2.10E+03 9.79E+05 9.86E+05

TSA-Sig 9.82E+05 4.74E-10 9.82E+05 9.82E+05

Cap

73

TSA-Mode 1.01E+06 4.74E-10 1.01E+06 1.01E+06

TSA-XOR 1.01E+06 2.16E+03 1.01E+06 1.02E+06

TSA-Sig 1.01E+06 4.74E-10 1.01E+06 1.01E+06

Cap

74

TSA-Mode 1.03E+06 3.55E-10 1.03E+06 1.03E+06

TSA-XOR 1.05E+06 5.60E+03 1.03E+06 1.06E+06

TSA-Sig 1.04E+06 4.74E-10 1.04E+06 1.04E+06

Table 4. The test results of small-sized problems for ST=0.3.

3-70 Mean Std.Dev. Best Worst

Cap

71

TSA-Mode 9.33E+05 5.31E+02 9.33E+05 9.34E+05

TSA-XOR 9.37E+05 2.08E+03 9.34E+05 9.40E+05

TSA-Sig 9.36E+05 4.74E-10 9.36E+05 9.36E+05

Cap

72

TSA-Mode 9.78E+05 3.76E+02 9.78E+05 9.79E+05

TSA-XOR 9.82E+05 1.63E+03 9.79E+05 9.85E+05

TSA-Sig 9.82E+05 4.74E-10 9.82E+05 9.82E+05

Cap

73

TSA-Mode 1.01E+06 4.74E-10 1.01E+06 1.01E+06

TSA-XOR 1.01E+06 2.25E+03 1.01E+06 1.02E+06

TSA-Sig 1.01E+06 4.74E-10 1.01E+06 1.01E+06

Cap

74

TSA-Mode 1.03E+06 3.55E-10 1.03E+06 1.03E+06

TSA-XOR 1.05E+06 4.99E+03 1.03E+06 1.06E+06

TSA-Sig 1.04E+06 4.74E-10 1.04E+06 1.04E+06

Table 5. The test results of medium-sized problems for ST=0.1.

1-100 Mean Std.Dev. Best Worst

Cap

101

TSA-Mode 8.02E+05 1.20E+03 7.99E+05 8.04E+05

TSA-XOR 8.09E+05 2.24E+03 8.01E+05 8.13E+05

TSA-Sig 8.07E+05 1.91E+03 8.03E+05 8.08E+05

Cap

102

TSA-Mode 8.58E+05 1.11E+03 8.55E+05 8.59E+05

TSA-XOR 8.70E+05 3.54E+03 8.61E+05 8.76E+05

TSA-Sig 8.61E+05 1.88E+03 8.58E+05 8.65E+05

Cap

103

TSA-Mode 8.95E+05 1.18E+03 8.94E+05 8.98E+05

TSA-XOR 9.16E+05 4.66E+03 9.05E+05 9.23E+05

TSA-Sig 8.99E+05 2.10E+03 8.96E+05 9.02E+05

Cap

104

TSA-Mode 9.31E+05 2.59E+03 9.29E+05 9.37E+05

TSA-XOR 9.75E+05 8.64E+03 9.57E+05 9.91E+05

TSA-Sig 9.42E+05 2.23E+03 9.38E+05 9.45E+05

Mustafa Servet Kiran et al. / IJETT, 72(4), 315-323, 2024

320

Table 6. The test results of medium-sized problems for ST=0.2.

2-100 Mean Std.Dev. Best Worst

Cap

101

TSA-Mode 8.01E+05 1.50E+03 7.98E+05 8.04E+05

TSA-XOR 8.09E+05 2.07E+03 8.05E+05 8.12E+05

TSA-Sig 8.06E+05 2.32E+03 8.03E+05 8.09E+05

Cap

102

TSA-Mode 8.58E+05 1.49E+03 8.55E+05 8.61E+05

TSA-XOR 8.69E+05 4.51E+03 8.59E+05 8.74E+05

TSA-Sig 8.61E+05 3.18E+03 8.56E+05 8.65E+05

Cap

103

TSA-Mode 8.96E+05 1.54E+03 8.94E+05 8.99E+05

TSA-XOR 9.16E+05 5.76E+03 9.00E+05 9.25E+05

TSA-Sig 9.00E+05 1.68E+03 8.98E+05 9.03E+05

Cap

104

TSA-Mode 9.31E+05 2.57E+03 9.29E+05 9.36E+05

TSA-XOR 9.71E+05 1.14E+04 9.38E+05 9.88E+05

TSA-Sig 9.41E+05 4.97E+03 9.33E+05 9.48E+05

Table 7. The test results of medium-sized problems for ST=0.3.

3-100 Mean Std.Dev. Best Worst

Cap

101

TSA-Mode 8.02E+05 1.61E+03 7.98E+05 8.05E+05

TSA-XOR 8.08E+05 2.25E+03 8.02E+05 8.11E+05

TSA-Sig 8.06E+05 9.41E+02 8.05E+05 8.08E+05

Cap

102

TSA-Mode 8.58E+05 1.32E+03 8.55E+05 8.61E+05

TSA-XOR 8.69E+05 3.13E+03 8.62E+05 8.75E+05

TSA-Sig 8.63E+05 9.99E+02 8.61E+05 8.64E+05

Cap

103

TSA-Mode 8.96E+05 1.44E+03 8.94E+05 8.98E+05

TSA-XOR 9.16E+05 4.83E+03 9.05E+05 9.24E+05

TSA-Sig 9.01E+05 1.17E+03 8.99E+05 9.03E+05

Cap

104

TSA-Mode 9.31E+05 2.45E+03 9.29E+05 9.37E+05

TSA-XOR 9.70E+05 6.53E+03 9.55E+05 9.82E+05

TSA-Sig 9.40E+05 2.92E+03 9.35E+05 9.44E+05

Table 8. The test results of large-sized problems for ST=0.1.

1-130 Mean Std.Dev. Best Worst

Cap

131

TSA-Mode 8.18E+05 3.49E+03 8.09E+05 8.23E+05

TSA-XOR 8.47E+05 4.05E+03 8.38E+05 8.52E+05

TSA-Sig 8.26E+05 3.29E+03 8.21E+05 8.32E+05

Cap

132

TSA-Mode 8.83E+05 5.47E+03 8.63E+05 8.90E+05

TSA-XOR 9.38E+05 7.20E+03 9.18E+05 9.49E+05

TSA-Sig 8.95E+05 6.20E+03 8.86E+05 9.02E+05

Cap

133

TSA-Mode 9.28E+05 8.42E+03 9.07E+05 9.42E+05

TSA-XOR 1.02E+06 1.02E+04 1.00E+06 1.04E+06

TSA-Sig 9.15E+05 9.31E+03 9.06E+05 9.31E+05

Cap

134

TSA-Mode 9.88E+05 9.89E+03 9.69E+05 1.00E+06

TSA-XOR 1.14E+06 2.03E+04 1.09E+06 1.17E+06

TSA-Sig 9.64E+05 1.27E+04 9.49E+05 9.81E+05

Mustafa Servet Kiran et al. / IJETT, 72(4), 315-323, 2024

321

Table 9. The test results of large-sized problems for ST=0.2.

2-130 Mean Std.Dev. Best Worst

Cap

131

TSA-Mode 8.19E+05 3.86E+03 8.10E+05 8.25E+05

TSA-XOR 8.47E+05 4.61E+03 8.31E+05 8.53E+05

TSA-Sig 8.28E+05 2.03E+03 8.25E+05 8.34E+05

Cap

132

TSA-Mode 8.80E+05 5.20E+03 8.63E+05 8.87E+05

TSA-XOR 9.40E+05 6.01E+03 9.25E+05 9.49E+05

TSA-Sig 8.97E+05 5.60E+03 8.88E+05 9.01E+05

Cap

133

TSA-Mode 9.26E+05 7.30E+03 9.11E+05 9.35E+05

TSA-XOR 1.02E+06 1.10E+04 9.98E+05 1.04E+06

TSA-Sig 9.23E+05 6.24E+03 9.12E+05 9.31E+05

Cap

134

TSA-Mode 9.87E+05 1.07E+04 9.46E+05 1.00E+06

TSA-XOR 1.13E+06 1.67E+04 1.10E+06 1.16E+06

TSA-Sig 9.65E+05 1.03E+04 9.52E+05 9.86E+05

Table 10. The test results of large-sized problems for ST=0.3.

3-130 Mean Std.Dev. Best Worst

Cap

131

TSA-Mode 8.17E+05 3.54E+03 8.09E+05 8.22E+05

TSA-XOR 8.44E+05 5.52E+03 8.23E+05 8.52E+05

TSA-Sig 8.24E+05 2.84E+03 8.21E+05 8.31E+05

Cap

132

TSA-Mode 8.80E+05 4.77E+03 8.69E+05 8.88E+05

TSA-XOR 9.33E+05 1.06E+04 9.09E+05 9.50E+05

TSA-Sig 8.97E+05 3.26E+03 8.93E+05 9.02E+05

Cap

133

TSA-Mode 9.27E+05 7.74E+03 9.06E+05 9.40E+05

TSA-XOR 1.02E+06 1.16E+04 9.93E+05 1.04E+06

TSA-Sig 9.49E+05 1.27E+04 9.27E+05 9.66E+05

Cap

134

TSA-Mode 9.84E+05 9.54E+03 9.63E+05 1.00E+06

TSA-XOR 1.13E+06 2.04E+04 1.09E+06 1.16E+06

TSA-Sig 1.03E+06 9.69E+03 1.02E+06 1.04E+06

In the comparison tables (Tables 2-10), the minimum

mean, best, worst values and standard deviation values are

given in bold font. The results obtained by Cap71, Cap72,

Cap73 and Cap74 problems are presented in Tables 2, 3 and 4

for ST=0.1, 0.2 and 0.3, respectively. As seen from Tables 2-

4, when the mode function-based TSA (TSA-Mode) is

compared with other binary versions, this version

demonstrates significant improvement in both solution quality

and robustness. In general, TSA-Mode reaches the optimal

solutions to the corresponding problems. Based on the

standard deviations, the robustness of the TSA-Sig algorithm

is better than that of the TSA-XOR for all of the test problems.

When ST values are set as 0.1, 0.2 and 0.3, the similar results

are obtained. Hence, for this particular problem group

(Cap70s), varying the ST values does not affect the

effectiveness of the algorithm. Table 3 displays the test results

for small-sized problems with ST=0.2, evaluating three

techniques: TSA-Mode, TSA-XOR, and TSA-Sig.

It presents mean, standard deviation, best, and worst

objective function values for each technique across problem

instances (Cap71 to Cap74). The data reveals variations in

performance among techniques, with TSA-Mode generally

exhibiting slightly worse performance. Additionally, the best

and worst objective function values illustrate the range of

performance achieved by each technique, with TSA-Sig

generally outperforming TSA-Mode and TSA-XOR in terms

of mean and best values. The experimental results obtained for

Cap101, Cap102, Cap103 and Cap104 problems are

respectively given in Tables 5, 6 and 7 for ST=0.1, 0.2 and

0.3. As seen from Tables 5-7, in all the test problems, the TSA-

Mode binary version is better for both solution quality and

robustness than the others. However, TSA-Mode could not

find the optimal solutions to any problem, although it is closer

to the optimal values. The robustness of the TSA-Sig

algorithm is similar to that of the TSA-XOR for all the test

problems. TSA-XOR has the worst performance with regard

Mustafa Servet Kiran et al. / IJETT, 72(4), 315-323, 2024

322

to mean and standard deviation values when compared with

all the binary versions. When ST values are set from 0.1 to 0.3

for solving UFLP, the obtained results are closer to each other.

The experimental results obtained by Cap131, Cap132,

Cap133 and Cap134 problems are respectively given in Tables

8, 9 and 10 for ST=0.1, 0.2 and 0.3. As seen from Tables 8-

10, the TSA-Mode binary version is generally better for both

solution quality and robustness than the others. However,

TSA-Sig is better than TSA-Mode for Cap 134 problem under

ST=0.1 and 0.2. For all of the Cap 130 problems, any binary

versions of TSA could not find the optimal solutions. The

solution quality of the TSA-Sig algorithm is better than that of

the TSA-XOR for all the test problems. In addition, TSA-

XOR has the worst performance among other binary versions,

according to Tables 8-10. When ST values are assigned to 0.1,

0.2 and 0.3 for solving UFLP, the obtained results are closer

to each other. Table 8 presents test results for solving large-

sized problems using three different techniques (TSA-Mode,

TSA-XOR, and TSA-Sig) with a parameter value of ST=0.1.

The Mean objective function value of TSA-Mode is

8.18E+05, with a standard deviation of 3.49E+03. The best

objective function value obtained is 8.09E+05, and the worst

is 8.23E+05. In addition, the TSA-XOR Mean objective

function value is 8.47E+05, with a standard deviation of

4.05E+03. The best objective function value obtained is

8.38E+05, and the worst is 8.52E+05. Finally, the TSA-Sig

Mean objective function value is 8.26E+05, with a standard

deviation of 3.29E+03. The best objective function value

obtained is 8.21E+05, and the worst is 8.32E+05. Table 9

outlines the test results for large-sized p0072oblems with

ST=0.2, comparing three techniques such as TSA-Mode,

TSA-XOR, and TSA-Sig cross problem instances (Cap131 to

Cap134). The result reveals slight variations in mean values

across techniques, with TSA-Sig generally performing

slightly better. Standard deviation indicates variability, while

best and worst values show the range of performance. Based

on the experimental results obtained by the proposed methods,

promising results are obtained in solving uncapacitated

facility location problems.

5. Results and Discussion
Results can be evaluated due to several parameters

involved in the tackled optimization problem. According to

the problem dimension parameter, which is represented by the

number of facilities, as seen from Table 2, for Cap71, Cap72,

Cap73, and Cap74 problems, all methods exhibit similar

performance. However, as the number of facilities increases

in Cap101, Cap102, Cap103, Cap104, Cap131, Cap132, and

Cap133 problems, TSA-Sig outperforms TSA-XOR. In

contrast, TSA-Mode outperforms both of them since it

achieves the best cost with a relatively considerable difference

from costs obtained by TSA-XOR and TSA- sig, as observed

in Tables 5 and 8.

As for the Search Tendency parameter (ST) introduced by

TSA, Tables 2, 3, 4, 5, 6 and 7 show that for different ST

values (0.1,0.2 and 0.3), the best cost values of the three

methods are nearly the same in Cap71, Cap72, Cap73, Cap74,

Cap101, Cap102, Cap103 and Cap104 problems. Also, for

Cap131 and Cap132, Tables 8, 9 and 10 reveal that there is no

observed change in all method's performance due to the

different values of ST. At the same time, for Cap 133 and

Cap134 problems, TSA-XOR obtains better cost as ST

increases, in contrast to the STA-Sig method, in which cost

value decreases with ST increment.

Regarding the standard deviation value of all the methods,

it has been noted that TSA-Mode and TSA-Sig are more

robust than TSA-XOR for all cases since in Cap71, Cap72,

and Cap73 problems, TSA-Sig was of the best robustness.

While, the TSA-Mode method was more robust in Cap74, as

it is seen in Tables 2, 3 and 4. However, for Cap101, Cap102,

Cap103 and Cap104 problems, TSA-Mode was the best robust

method as seen in Tables 5, 6 and 7.

As for Cap131, Cap132, Cap133 and Cap134 problems,

close standard deviations were noted for TSA-Mode and TSA-

Sig methods, though TSA-Mode achieved better standard

deviations in Cap132, Cap133 and Cap134 problems, as seen

in Tables 8, 9 and 10.In conclusion, based on the evaluations

conducted above, it can be inferred that the TSA-Mode

method surpasses TSA-XOR and TSA-Sig in optimizing the

UFLP problem. The TSA-Mode method has demonstrated

robustness and consistently achieved the lowest costs across

all instances of the UFLP problem addressed. Based on these

results, the binary versions of TSA produce promising and

competitive results in solving UFLPs in terms of solution

quality and robustness.

6. Conclusion
In this paper, the authors examined the adaptation of TSA

for addressing binary optimization problems. Three variations

of the TSA algorithm were proposed, and their efficacy was

evaluated on uncapacitated facility location problems of

varying sizes. The performance of these proposed methods

was analyzed across different ST values. The experimental

results revealed promising outcomes achieved by these

methods. Overall, the findings suggest that TSA variants

designed for binary optimization hold the potential for

effectively addressing a wide range of binary optimization

problems.

Acknowledgement
 We extend our heartfelt thanks to SIMAD University,

especially the Center for Research and Development (CRD),

for sponsoring this research with grant number SU-PG-2024-

0005. Their support has been invaluable in enabling the

completion of this manuscript, contributing significantly to

our field of study.

Mustafa Servet Kiran et al. / IJETT, 72(4), 315-323, 2024

323

References
[1] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization,” Proceedings of ICNN'95 - International Conference on Neural Networks,

Perth, WA, Australia, pp. 1942-1948, 1995. [CrossRef] [Google Scholar] [Publisher Link]

[2] D. Karaboga, and B. Basturk, “On the Performance of Artificial Bee Colony (ABC) Algorithm,” Applied Soft Computing Journal, vol. 8,

no. 1, pp. 687-697, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[3] Dervis Karaboga, and Bahriye Basturk, “A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony

(ABC) Algorithm,” Journal of Global Optimization, vol. 39, pp. 459-471, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[4] Xin-She Yang, “Firefly Algorithm, Stochastic Test Functions and Design Optimization,” International Journal of Bio-Inspired

Computation, vol. 2, no. 2, pp. 78-84, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[5] Xin-She Yang, “A New Metaheuristic Bat-Inspired Algorithm,” Nature Inspired Cooperative Strategies for Optimization, pp. 65-74,

2010. [CrossRef] [Google Scholar] [Publisher Link]

[6] J. Kennedy, and R.C. Eberhart, “A Discrete Binary Version of the Particle Swarm Algorithm,” 1997 IEEE International Conference on

Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Orlando, FL, USA, pp. 4104-4108, 1997. [CrossRef] [Google

Scholar] [Publisher Link]

[7] Mehmet Sevkli, and Ali R. Guner, “A Continuous Particle Swarm Optimization Algorithm for Uncapacitated Facility Location

Problem,” International Workshop on Ant Colony Optimization and Swarm Intelligence, pp. 316-323, 2006. [CrossRef] [Google

Scholar] [Publisher Link]

[8] Nevena Lazic, Brendan J. Frey, and Parham Aarabi, “Solving the Uncapacitated Facility Location Problem Using Message Passing

Algorithms,” Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 429-436, 2010. [Google

Scholar] [Publisher Link]

[9] Hazem Ahmed, and Janice Glasgow, “Swarm Intelligence: Concepts, Models and Applications,” School of Computing, Queens

University, Technical Report, pp. 1-51, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[10] Frederick Ducatelle, Gianni A. Di Caro, and Luca M. Gambardella, “Principles and Applications of Swarm Intelligence for Adaptive

Routing in Telecommunications Networks,” Swarm Intelligence, vol. 4, no. 3, pp. 173-198, 2010. [CrossRef] [Google Scholar] [Publisher

Link]

[11] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Optimization by a Colony of Cooperating Agents,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29-41, 1996. [CrossRef] [Google Scholar] [Publisher Link]

[12] Arnab Kole, Parichay Chakrabarti, and Somnath Bhattacharyya, “An Ant Colony Optimization Algorithm for Uncapacitated Facility

Location Problem,” Artificial Intelligence and Applications, vol. 1, no. 1, pp. 55-61, 2014. [Google Scholar]

[13] Yusuke Watanabe, Mayumi Takaya, and Akihiro Yamamura, “Fitness Function in ABC Algorithm for Uncapacitated Facility Location

Problem,” 3rd International Conference on Information and Communication Technology-EurAsia (ICT-EURASIA) and 9th International

Conference on Research and Practical Issues of Enterprise Information Systems (CONFENIS), Daejeon, Korea, pp. 129-138, 2015.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Mauricio G.C. Resende, and Renato F. Werneck, “A Hybrid Multistart Heuristic for the Uncapacitated Facility Location Problem,”

European Journal of Operational Research, vol. 174, no. 1, pp. 54-68, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[15] J.E. Beasley, “OR-Library: Distributing Test Problems by Electronic Mail,” Journal of the Operational Research Society, vol. 41, no. 11,

pp. 1069-1072, 1990. [CrossRef] [Google Scholar] [Publisher Link]

[16] Ahamet Cevahir Çınar, “A Cuda-based Parallel Programming Approach to Tree-Seed Algorithm,” MSc Thesis, Selçuk University, pp. 1-

111, 2016. [Google Scholar] [Publisher Link]

http://dx.doi.org/10.1109/ICNN.1995.488968
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=J.+Kennedy+and+R.+Eberhart%2C+Particle+Swarm+Optimization&btnG=
https://ieeexplore.ieee.org/document/488968
https://doi.org/10.1016/j.asoc.2007.05.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+performance+of+artificial+bee+colony+%28ABC%29+algorithm&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1568494607000531
https://doi.org/10.1007/s10898-007-9149-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+powerful+and+efficient+algorithm+for+numerical+function+optimization%3A+Artificial+bee+colony+%28ABC%29+algorithm&btnG=
https://link.springer.com/article/10.1007/S10898-007-9149-X
https://doi.org/10.1504/IJBIC.2010.032124
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Firefly+algorithm%2C+stochastic+test+functions+and+design+optimization&btnG=
https://www.inderscienceonline.com/doi/abs/10.1504/IJBIC.2010.032124
https://doi.org/10.1007/978-3-642-12538-6_6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+metaheuristic+Bat-inspired+Algorithm&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-12538-6_6
https://doi.org/10.1109/ICSMC.1997.637339
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Discrete+Binary+Version+of+the+Particle+Swarm+Algorithm&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Discrete+Binary+Version+of+the+Particle+Swarm+Algorithm&btnG=
https://ieeexplore.ieee.org/abstract/document/637339
https://doi.org/10.1007/11839088_28
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Continuous+Particle+Swarm+Optimization+Algorithm+for+Uncapacitated+Facility+Location+Problem&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Continuous+Particle+Swarm+Optimization+Algorithm+for+Uncapacitated+Facility+Location+Problem&btnG=
https://link.springer.com/chapter/10.1007/11839088_28
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Solving+the+Uncapacitated+Facility+Location+Problem+Using+Message+Passing+Algorithms&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Solving+the+Uncapacitated+Facility+Location+Problem+Using+Message+Passing+Algorithms&btnG=
https://proceedings.mlr.press/v9/lazic10a.html
https://doi.org/10.13140/2.1.1320.2568
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Swarm+Intelligence%3A+Concepts%2C+Models+and+Applications&btnG=
https://www.studocu.com/row/document/abbottabad-university-of-science-and-technology/research-methodology/swarm-intelligence-concepts-models-and-a-3/34045762
https://doi.org/10.1007/s11721-010-0040-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Principles+and+applications+of+swarm+intelligence+for+adaptive+routing+in+telecommunications+networks&btnG=
https://link.springer.com/article/10.1007/s11721-010-0040-x
https://link.springer.com/article/10.1007/s11721-010-0040-x
https://doi.org/10.1109/3477.484436
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Ant+System%3A+Optimization+by+a+colony+of+cooperating+agents&btnG=
https://ieeexplore.ieee.org/document/484436
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Ant+Colony+Optimization+Algorithm+for+Uncapacitated+Facility+Location+Problem&btnG=
https://doi.org/10.1007/978-3-319-24315-3_13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fitness+Function+in+ABC+Algorithm+for+Uncapacitated+Facility+Location+Problem&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-24315-3_13
https://doi.org/10.1016/j.ejor.2005.02.046
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+multistart+heuristic+for+the+uncapacitated+facility+location+problem&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0377221705002481
https://doi.org/10.1057/jors.1990.166
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=OR-Library%3A+Distributing+Test+Problems+by+Electronic+Mail&btnG=
https://www.tandfonline.com/doi/abs/10.1057/jors.1990.166
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Cuda-based+Parallel+Programming+Approach+to+Tree-Seed+Algorithm&btnG=
https://acikbilim.yok.gov.tr/handle/20.500.12812/460478

