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Abstract - While the rapid development of vaccines during the COVID-19 pandemic helped save billions of lives, a significant 

percentage of the population reported adverse reactions after vaccination. Post-vaccination surveys were conducted to 

understand the possible side effects. Analyzing and understanding the side effects enables the relevant stakeholders to gain more 

understanding of the vaccine and allows the individual to make informed decisions about whether to receive the vaccine. This 

work aims to identify a robust approach that can be used to predict the possibility of potential adverse symptoms. A dataset 

comprising 840 participants with 15 Post-Vaccination Symptoms was considered for the study. Synthetic Minority Oversampling 

TEchnique (SMOTE) was used to handle the class imbalance of the dataset. A combination of SMOTE and ensemble machine 

learning models was used to predict the adverse reactions to COVID-19 vaccines. The ensemble Machine Learning (ML) models 

that are considered for this study are Random Forest, Extreme Gradient Boosting Machine (XGBoost), Light Gradient Boosting 

Machine, and AdaBoost. The metrics accuracy, precision, recall and Receiver Operating Characteristic-Area Under the Curve 

(ROC-AUC) were used to measure the performance of the models. The dataset was pre-processed to handle missing values and 

one-hot encoding was applied to convert categorical variables into the numerical format. Insights into the data distribution and 

relationships between variables were gained through exploratory data and correlation analysis, respectively. Class imbalance 

in the target variables was addressed using SMOTE, resulting in a significantly improved F1-score and ROC-AUC score. Among 

the ensemble ML models, XGBoost delivered the best performance metrics. A combined performance score was calculated by 

averaging the F1-score and accuracy to identify the best model. XGBoost obtained the highest performance score among the 

ensemble ML models, and its performance is further enhanced by performing the threshold adjustment using the maximum F1-

score strategy. The findings suggest that the combination of SMOTE and ensemble learning models with threshold adjustment 

provides a more efficient prediction of adverse effects after COVID-19 vaccination, aiding in healthcare decision-making. 
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1. Introduction  
The COVID-19 pandemic, triggered by the novel 

coronavirus SARS-CoV-2, has created an unprecedented 

global health emergency that has led to widespread illness and 

mortality [1, 2]. In response to this dire situation, the scientific 

community collaborated on an unprecedented scale to develop 

effective vaccines to combat the virus. The rapid development 

and deployment of COVID-19 vaccines marked a remarkable 

milestone in the history of medicine. Governments, healthcare 

organizations, and pharmaceutical companies worldwide 

joined forces to conduct rigorous clinical trials to ensure safety 

and efficacy [3–5]. The mass vaccination campaigns that 

followed sought to protect vulnerable populations and curb the 

spread of the virus. With millions of people receiving COVID-

19 vaccines, the world witnessed an extraordinary effort to 

combat the pandemic and pave the way toward a more resilient 

and healthier future. However, despite these achievements, 

continuous monitoring, research, and evaluation of the 

vaccine’s impact remain crucial to assess its effectiveness and 

address emerging challenges [6]. Post-vaccination surveys 

play a pivotal role in assessing the real-world impact and 

safety of COVID-19 vaccines.  

These surveys involve collecting data from individuals 

who have received the vaccine, typically after a certain period 

following vaccination [7–10]. The surveys capture a wide 

range of information, including any adverse effects 

experienced, changes in health status, and overall vaccine 

satisfaction. By systematically gathering and analyzing this 

data, public health agencies and researchers can gain insights 

https://www.internationaljournalssrg.org/
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into the prevalence and severity of post-vaccination side 

effects, identify rare or unexpected adverse events, and 

monitor the vaccine’s effectiveness in preventing illness [7]. 

These surveys provide a valuable avenue for individuals to 

share their experiences and contribute to the collective 

understanding of vaccine safety and efficacy [11]. 

The data collected from post-vaccination surveys inform 

public health policies, guide communication strategies, and 

support ongoing efforts to optimize vaccination campaigns, 

ultimately contributing to the broader goal of controlling and 

mitigating the impact of the COVID-19 pandemic. 

In 2021, a national referral hospital in Indonesia 

conducted a vaccination campaign among its staff and 

recorded post-vaccination symptoms. This study included 840 

participants and 15 post-vaccination symptoms [5]. Statistical 

analysis was performed to study the impact of vaccination. A 

similar statistical study was conducted among healthcare 

professionals in Ethiopia [12]. Other studies include 

symptom-level impact analysis [13,14], vaccine-wise impact 

analysis [15], and long-term and short-term effects of the 

vaccines [16,17]. 

Various studies have used machine learning techniques to 

predict adverse effects following vaccination. These 

methodologies leverage the power of statistical data analysis 

and predictive modeling to enhance our understanding of 

potential post-vaccination outcomes [18, 19]. Researchers 

have harnessed machine learning algorithms to analyze large 

datasets, incorporating factors such as demographic 

information, medical history, and vaccine specifics to predict 

the likelihood and severity of adverse effects [19]. 

These predictive models aim to identify patterns and 

associations that can aid healthcare professionals and 

policymakers in making informed decisions. By utilizing 

machine learning in the context of post-vaccination adverse 

effects prediction, these studies contribute to the advancement 

of vaccine safety assessment and ultimately contribute to the 

overall success of vaccination campaigns and public health 

strategies. 

A machine learning-based symptom prediction was 

attempted in research, where these post-vaccination symptoms 

were considered targets, and the participant information was 

taken as inputs to the model. The model attempted a multi-

target classification model to predict multiple symptoms with 

one model. This model exhibited poor performance due to 

sparse patterns and class imbalance problems. 

In the same work, another approach was attempted to 

predict the possibility of at least one symptom post-

vaccination. After transforming the prediction target, the 

accuracy of prediction was 89% with the decision tree model. 

A symptom-level model with class imbalance handling 

was suggested as an enhancement to work. Other machine 

learning works on adverse effects predictions were noticed on 

datasets extracted from the Vaccination Adverse Events 

Reporting System (VAERS) database [20-21]. 

2. Proposed Methodology     
2.1. Framework 

The framework of the proposed methodology is 

illustrated in Figure 1. The raw data was sourced from a survey 

conducted among hospital staff at a National Referral Hospital 

in Indonesia, specifically focusing on COVID-19 vaccination 

side effects.  

The survey data collected from February 9th to February 

13th, 2021, included responses from 840 participants, 

comprising 270 males and 570 females. To pre-process the 

data, missing values were replaced with default values, and 

categorical variables such as sex, profession, living area, and 

education were transformed into a numerical format using 

one-hot encoding. 

Exploratory Data Analysis (EDA) provided insights into 

data distribution and helped identify patterns and outliers. 

Additionally, correlation analysis was conducted to 

understand the relationships between input features and target 

variables. To tackle the class imbalance in the target variables, 

SMOTE was employed and enhance predictive model 

capacity. The dataset was then split into training and testing 

sets, with 67% of the dataset allocated for training and the rest 

allocated to evaluate the performance of the models.  

Four ensemble Machine Learning (ML) models are taken 

up for the study – Random Forest (RF), Extreme Gradient 

Boosting Machine (XGBoost), Light Gradient Boosting 

Machine (LGBM), and Adaptive Boosting (AdaBoost). The 

metrics accuracy, precision, recall, F1-score and Receiver 

Operating Characteristic-Area Under the Curve (ROC-AUC) 

were used to evaluate the performance of the models. 

These metrics collectively offered a comprehensive 

evaluation of the model’s predictive capabilities, with 

accuracy indicating overall correctness, F1-score providing a 

balance between precision and recall, precision assessing false 

positives, recall evaluating true positive rates, and ROC-AUC 

determining the models’ ability to distinguish between 

different classes. 

Following this rigorous methodology, the aim was to 

contribute valuable insights into predicting adverse effects of 

COVID-19 vaccination among hospital staff. The research 

findings hold potential significance in guiding healthcare 

decision-making and informing policy recommendations 

related to vaccination administration and side effect 

management. 
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Fig. 1 Methodology of the end-to-end pipeline of the proposed modeling framework with SMOTE and Ensemble ML Models.

2.2. The SMOTE 

SMOTE is a technique used to address the class 

imbalance in a dataset by generating synthetic samples for the 

minority class. This helps balance the class distribution and 

improves the performance of machine learning models. The 

SMOTE algorithm used in this work is obtained from the 

imblearn package of Sci-Kit Learn [22]. Choosing a suitable 

SMOTE model based on the data types is essential. SMOTE, 

in general, is designed to handle continuous data. While 

working with discrete or categorical data, it is essential to 

consider a suitable version of the SMOTE function [23-24].In 

SMOTE, synthetic samples for the minority class are 

generated to balance the classes in the dataset. 

2.3. Ensemble ML Models 

Ensemble ML models are used to enhance predictive 

accuracy, stability, and robustness by combining the outputs 

of multiple individual ML models. They mitigate the 

limitations of single models, capturing diverse patterns and 

reducing overfitting. Techniques like Bootstrap Aggregating 

(Bagging) and boosting ensemble models provide a more 

comprehensive understanding of complex data relationships, 

leading to improved generalization and more reliable 

predictions [25]. The ensemble ML models used in this work 

are: 

2.3.1. RF 

It is an ensemble learning model that constructs multiple 

decision trees during training and combines their predictions 

through voting or averaging. It mitigates overfitting by 

introducing randomness in the tree-building process.  

Each decision tree is trained on a bootstrap sample of the 

data, and the final prediction is based on the majority vote or 

average of the individual tree predictions. 

2.3.2. XGBoost 

It is a boosting algorithm renowned for its efficiency and 

predictive power. It builds an ensemble of weak learners 

(typically decision trees) sequentially, with each new tree 

aimed at correcting the errors made by the previous ones.  

XGBoost employs regularization techniques to prevent 

overfitting and provides insights into the importance of 

features.  

2.3.3. LGBM 

It is another gradient-boosting framework optimized for 

speed and efficiency. It employs a histogram-based approach 

for binning continuous feature values, leading to faster 

training times. LGBM uses a leaf-wise tree growth strategy 

and implements features like categorical variable handling and 

early stopping.  

2.3.4. AdaBoost 

AdaBoost is a pioneering ensemble model that iteratively 

merges the predictions of weak learners. It increases the 

weights of incorrectly classified instances in every iteration, 

thereby guiding subsequent learners to pay more attention to 

the more complex predictions. By adjusting the weights of the 

predictions from individual models according to their 

accuracy, AdaBoost effectively allocates greater significance 

to the more precise models. 
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2.4. Evaluation Metrics 

The experiments were conducted in a cloud-based 

environment without General Processing Unit support, 

utilizing Python Programming. The performance of the ML 

models was evaluated using accuracy, recall, F1-score, 

precision, and the AUC. 

2.4.1. Accuracy 

Accuracy measures the ratio of correctly predicted 

instances to the total instances in the dataset. It provides an 

overall sense of how well the model’s predictions match the 

outcomes. 

2.4.2. Precision 

Precision gauges are used to find the proportion of 

correctly predicted positive instances out of all instances 

predicted as positive. It indicates the model’s ability to 

minimize false positives. 

2.4.3. Recall 

It is also known as Sensitivity or True Positive Rate, 

which measures the ratio of correctly predicted positive 

instances out of all actual positive instances. It quantifies the 

model’s ability to capture all relevant positive instances. 

2.4.4. F1-score 

It is calculated by the harmonic mean of Precision and 

Recall. It provides a balanced evaluation metric, especially 

when there is an imbalance between classes or false positives 

and negatives must be minimized. 

2.4.5. ROC-AUC 

It assesses the model’s ability to discriminate between 

positive and negative instances across different probability 

thresholds. A higher AUC indicates better overall 

performance in distinguishing between classes. Collectively, 

these metrics provide a thorough assessment of the model’s 

predictive quality and ability to correctly classify instances 

and manage trade-offs between different aspects of 

performance. 

3. Results and Discussions 
This section discusses the performance of ensemble 

learning models. Table 1 shows the accuracy scores for 

symptom level prediction across four different ensemble ML 

models. Table 1 shows that the models performed better in 

detecting symptoms of redness, fever, diarrhea, nausea and 

vomiting, and breathlessness. The models predicted all the 

above-mentioned symptoms with accuracy scores ranging 

from 0.94 to 0.98. Conversely, the ensemble ML models 

predicted the symptoms of headache, muscle pain, tiredness, 

and coughing with comparatively lower accuracy scores, 

ranging from 0.54 to 0.69. XGB performed the best as it 

predicted all symptoms with the highest accuracy compared to 

the other models taken for the study. 

Table 1. Accuracy scores of the ensemble ML models in predicting    

COVID-19 Symptoms 

Accuracy Scores 

Symptoms RF XGB LGBM ADB 

Swelling 0.83 0.84 0.82 0.77 

Redness 0.96 0.95 0.95 0.94 

Fever 0.97 0.96 0.96 0.97 

Headache 0.67 0.69 0.65 0.65 

Muscle Pain 0.6 0.61 0.6 0.58 

Tiredness 0.58 0.59 0.56 0.54 

Coughing 0.86 0.87 0.85 0.77 

Diarrhea 0.95 0.96 0.94 0.93 

Nausea and vomiting 0.96 0.96 0.95 0.94 

Breathlessness 0.97 0.96 0.96 0.94 

Joint Pain 0.98 0.98 0.98 0.96 

Table 2. Precision scores of the ensemble ML models in predicting    

COVID-19 Symptoms 

Precision scores 

Symptoms RF XGB LGBM ADB 

Swelling 0.79 0.8 0.78 0.72 

Redness 0.98 0.98 0.97 0.94 

Fever 0.94 0.94 0.93 0.96 

Headache 0.69 0.71 0.68 0.67 

Muscle Pain 0.55 0.56 0.55 0.53 

Tiredness 0.54 0.55 0.53 0.51 

Coughing 0.85 0.86 0.83 0.77 

Diarrhea 0.95 0.95 0.94 1.00 

Nausea and vomiting 0.98 0.98 0.97 0.94 

Breathlessness 0.94 0.93 0.92 0.95 

Joint Pain 0.96 0.96 0.96 0.98 

The precision scores of the ensemble learning models are 

tabulated in Table 2. High precision scores were observed for 

symptoms - redness, diarrhea, nausea and vomiting, 

breathlessness, and joint pain, with scores ranging from 0.92 

to 0.98 and even reaching 1.00 for diarrhea predicted by 

AdaBoost. A high precision score for the above-mentioned 

symptoms indicates that the models make predictions with a 

low false positive rate. On the contrary, symptoms like muscle 

pain, tiredness, and headache exhibited lower precision 

scores, between 0.51 and 0.71, indicating a higher rate of false 

positives. These results reflect the models’ varying levels of 

specificity across different symptoms, with some models 

demonstrating a high precision in their predictions.  

In contrast, others suggest potential areas for reducing the 

incidence of false positives. Table 3 shows the recall scores of 

the ensemble ML models taken for the study/ The recall scores 

reveal the models’ ability to identify positive cases for each 

symptom correctly. Notably, high recall scores were observed 

for symptoms - fever, breathlessness, and joint pain, with 

scores reaching up to 1.00 for some models, indicating an 

exceptional ability of these models to identify almost all 

positive cases for these symptoms.  
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Table 3. Recall scores of the ensemble ML models in predicting 

COVID-19 Symptoms 

Recall scores 

Symptoms RF XGB LGBM ADB 

Swelling 0.92 0.92 0.92 0.92 

Redness 0.93 0.93 0.93 0.93 

Fever 0.99 0.99 0.99 0.97 

Headache 0.69 0.7 0.64 0.68 

Muscle Pain 0.64 0.62 0.61 0.68 

Tiredness 0.64 0.66 0.56 0.69 

Coughing 0.88 0.90 0.88 0.8 

Diarrhea 0.96 0.96 0.95 0.87 

Nausea and vomiting 0.93 0.93 0.93 0.93 

Breathlessness 1.00 1.00 1.00 0.91 

Joint Pain 0.99 0.99 0.99 0.94 

The models predicted symptoms such as redness, 

swelling, coughing, nausea, and vomiting with high recall 

scores, ranging from 0.88 to 0.93, reflecting a strong 

capability in correctly identifying a high proportion of positive 

instances. Conversely, for symptoms like headache, muscle 

pain, and tiredness, the models exhibited lower recall scores, 

between 0.56 and 0.7, suggesting a relatively weaker 

performance in identifying positive cases for these symptoms.  

These results demonstrate the effectiveness of the models 

in varying degrees across different symptoms, with some 

symptoms being identified with high accuracy. In contrast, 

others indicate areas where model sensitivity could be 

improved. 

Table 4 depicts the evaluated F1-scores of the ensemble 

ML models, revealing insights into the models' precision and 

recall balance. It was found that the F1 scores of the ensemble 

ML models were notably high for symptoms - fever, diarrhea, 

nausea and vomiting, breathlessness, and joint pain, with 

values ranging between 0.93 and 0.98 across the models, 

indicating a strong balance between precision and recall for 

these symptoms.  

Table 4. F1-scores of the ensemble ML models in predicting 

COVID-19 Symptoms 

F1-scores 

Symptoms RF XGB LGBM ADB 

Swelling 0.85 0.86 0.84 0.81 

Redness 0.96 0.95 0.95 0.94 

Fever 0.97 0.96 0.96 0.97 

Headache 0.69 0.71 0.66 0.68 

Muscle Pain 0.59 0.59 0.58 0.6 

Tiredness 0.59 0.6 0.55 0.59 

Coughing 0.86 0.88 0.86 0.78 

Diarrhea 0.95 0.95 0.94 0.93 

Nausea and vomiting 0.95 0.96 0.95 0.93 

Breathlessness 0.97 0.96 0.96 0.93 

Joint Pain 0.98 0.98 0.98 0.96 

Table 5. ROC-AUC Scores of the ensemble ML models in predicting 

COVID-19 symptoms 

ROC-AUC scores 

Symptoms RF XGB LGBM ADB 

Swelling 0.93 0.93 0.91 0.88 

Redness 0.99 0.99 0.98 0.99 

Fever 0.99 0.99 0.99 0.99 

Headache 0.74 0.76 0.71 0.68 

Muscle Pain 0.64 0.65 0.64 0.65 

Tiredness 0.62 0.61 0.59 0.55 

Coughing 0.94 0.94 0.92 0.89 

Diarrhea 0.99 0.99 0.98 0.97 

Nausea and vomiting 0.99 0.99 0.99 0.99 

Breathlessness 1.00 1.00 0.99 0.99 

Joint Pain 1.00 1.00 1.00 1.00 

On the other hand, for symptoms such as muscle pain, 

tiredness, and headache, the model gave lower F1 scores, 

falling between 0.55 and 0.71, which suggests a lesser degree 

of balance between precision and recall for the prediction of 

these symptoms. The results reflect the models' varying 

effectiveness in accurately predicting different symptoms, 

with some symptoms achieving high precision and recall 

while others demonstrate areas for potential improvement in 

model performance. 

The AUC associated with the prediction of various 

symptoms was analyzed to assess the models’ ability to 

distinguish between the symptom’s presence and absence. 

High AUC scores were observed for symptoms - redness, 

fever, diarrhea, nausea and vomiting, breathlessness, and joint 

pain, with scores reaching up to 1.00, indicating the models' 

perfect ability to differentiate between positive and negative 

cases for these symptoms. This suggests that the models are 

capable of ranking positive cases higher than negative ones 

with high confidence. 

The AUC scores were also high for coughing and swelling, 

ranging from 0.9 to 0.94, reflecting a strong discriminatory 

ability between the symptom’s presence and absence. 

However, for symptoms like headache, muscle pain, and 

tiredness, the AUC scores were comparatively lower, ranging 

from 0.59 to 0.76, indicating a lesser capability of these 

models to distinguish between positive and negative cases 

effectively. These lower scores suggest that there is a more 

significant overlap between the distribution of scores for 

positive and negative cases, leading to a higher chance of 

misclassification. 

To decide the best ensemble, we compute the average 

performance score for each model, using Equation 1, Equation 

2 and Equation 3. Acc_model  symptoms is the accuracy score of 

the model for a particular symptom, TSymptoms is the total 

number of symptoms, Avg_accmodel is the average accuracy of 

the model, F1_score_model  symptoms is the F1-score of the 
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model for a particular symptom, Avg_F1_scoremodel is the 

average F1-score of the model, Avg_scoremodel is the average 

score of the model. 

Avg_accmodel

=  [∑ Acc_model  symptoms] TSymptoms⁄                               (1) 

Avg_F1_scoremodel

=  [∑ F1_score_model  symptoms] TSymptoms⁄                     (2) 

Avg_scoremodel

= (Avg_accmodel +  Avg_F1scoremodel) 2⁄                          (3) 

Figure 2 shows the average performance score of the four 

ensemble ML models. It is observed that the XGBoost 

outperforms other algorithms with an average performance 

score of 0.85. Random Forest and LGBM displayed a close 

performance.  

To enhance the performance, we chose the best model, 

XGB, and tuned the thresholds for classification. The 

thresholds were varied between 0.4 to 0.7 with an increment 

of 0.01 in each step, and the performance metrics at each 

increment were computed. The threshold which yielded the 

maximum F1-score was decided to be the optimum threshold. 

The results after threshold adjustment were also compared 

with the existing results, as shown in Figure 3. 

From Figure 3, it is observed that after threshold 

adjustment, there was a significant improvement in the recall 

rate and accuracy in most of the cases. This strategy could not 

improve the model's performance in some cases, like 

‘Tiredness’ and ‘Breathlessness’.  

Hence, there is a need to check the data inconsistencies and 

efficiency of the oversampling techniques in future work. 

There is also a possibility of a statistical drift due to the 

oversampling strategy. 

To understand the excellent performance exhibited by 

XGB, the average feature importance of the attributes across 

symptoms is visualized in Figures 4 and 5. The plots reveal 

that attributes such as age, profession, and education had more 

significance in the model decisions. The feature significance 

scores also indicate that doctors and medical professionals 

with master’s degrees in the age group 36-40 years had more 

significance with the symptoms. From a real-world point of 

view, it is evident that medical professionals had high 

exposure to the infected population.  

Also, the nature of work during the peak infection days 

could have contributed to the occurrence of adverse effects. 

The features such as age greater than or equal to 60 and 

education belonging to junior high school obtained lower 

feature importance scores, indicating the underrepresentation 

of these populations in the data sample taken for modeling. As 

the sample contains a hospital staff population, the chances of 

staff with education less than graduation or age above 60 years 

are less. This insight emphasizes the need for data variety in 

the dataset. Otherwise, the model for decision-making might 

not capture the underrepresented patterns. 

In our work, the dataset was SMOTE to handle class 

imbalance. Oversampling tends to cause data to drift into 

statistical distributions due to its intrinsic nature of increasing 

the volume of minority samples. However, the feature 

importance insights show that the oversampling was able to 

retain the basic quality of the data sample.

 
Fig. 2 Comparison of average performance of the ensemble ML models after SMOTE 
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Fig. 3 Performance of the XGBoost model after Threshold adjustment 

 
Fig. 4 Distribution of average of feature importance scored by attributes at each symptom level in the XGBoost model 
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Fig. 5 Distribution of average of feature importance scored by attributes at each symptom level in the XGBoost model

4. Conclusion and Future Work 
This work outlines a framework to predict the possible 

symptoms of COVID-19 vaccination better using the 

information on an individual background. The empirical study 

of ensemble ML models - RF, XGB, LGBM, and AdaBoost, 

for predicting post-vaccination symptoms has revealed 

substantial potential in leveraging these techniques for 

improved diagnostic accuracy and patient care. The analysis 

across various metrics - accuracy, precision, recall, F1-score, 

and ROC-AUC highlighted the models’ effectiveness in 

predicting symptoms and showcased the critical role of 

machine learning in healthcare applications. However, the 

study also uncovered significant drawbacks, particularly in the 

models’ performance on symptoms with lower predictive 

scores, underscoring a vital enhancement area. A key factor 

influencing these outcomes could be the implementation of 

addressing class imbalance in the dataset. While SMOTE 

helps by artificially generating new samples from the minority 

class, thereby balancing the distribution between classes, it 

can also introduce synthetic noise into the dataset. This may 

potentially affect the models’ ability to learn from the training 

data to unseen data, impacting overall predictive performance. 

To mitigate these issues and further enhance predictive 

accuracy, future research will explore alternative 

oversampling techniques that might offer more nuanced 

approaches to handling class imbalance without introducing 

excessive noise. Additionally, advanced hyperparameter 

optimization techniques will be employed to fine-tune the 

models, and the exploration of deep learning models will be 

prioritized for their potential to capture complex data patterns 

more effectively. 

Future work would also refine the understanding of 

vaccination outcomes and improve risk assessment with an 

enhanced method, offering new avenues for personalized 

medicine and public health initiatives. 
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