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Abstract - Nocturnal sleep is the main time to recover energy and repair cells in the human body. Hence, the detection of 

insomnia and the assessment of the quality of sleep are important in determining patients’ states of health so that appropriate 

therapies can be administered. Many previous studies often evaluated sleep quality by analyzing positive and negative emotions; 

in this study, we developed a new method for evaluating the quality of sleep based on detecting the number of emotional arousal 

epochs during sleep. Emotional arousal epochs (each contains a 10-second segment of data) were extracted based on analyzing 

the standard epochs of emotional data. The densities of emotional arousal epochs were correlated with the states of the patient’s 

health, and the results were compared to develop a table of relationships for the assessment of the quality of sleep. The densities 

of emotional arousal epochs were correlated with the states of the patient’s health, and the results were compared to develop a 

table of relationships for the assessment of the quality of sleep. The new method has proven effective when integrated into an 

automatic identification system; this system identifies emotional segments and classifies sleep quality based on the intensity of 

emotional epochs in each sleep cycle with an average accuracy of 87.5%. 

Keywords - Sleep, Emotional arousal, Wavelet entropy, Electroencephalogram, Sleep disorders. 

1. Introduction 
Having a good quality of sleep is very important to 

everybody, but sleep disorders are a common occurrence. 

Those that occur most frequently are insomnia, narcolepsy, 

and sleep apnea. When a person has insomnia, negative 

emotions will likely occur at work the next day, such as 

hostility and fatigue [1]. Many other disorders manifest 

themselves through sleep disturbances. Sleep disturbances 

rank second-most popular among all illnesses worldwide. 

During sleep, the human brain and respiration go through 

several psychophysiological states, such as emotional feelings 

and arousal from sleep, which interfere with sound, stable 

sleep. Many approaches can be used to recognize disturbances 

in sleep or to classify the sleep stages. At present, the main 

diagnostic tools in sleep medicine are those that measure 

psychophysiological signals, such as polysomnography 

(PSG), which measures the effort expended in breathing; 

oxygen levels in the blood; electrical activity in the brain 

(EEG); electrocardiograms (ECGs); electrooculograms 

(EOGs); and muscle activity (EMG). Each method has its own 

strengths, but EEGs provide the most important signals in the 

field of sleep research. EEG signals can reveal unusual 

patterns that have sudden changes or abrupt shifts in frequency 

[2], and these signals provide mended scoring rules for the 

recognition of EEG patterns during sleep based on 

Rechtschaffen and Kales’ (R&K’s) manual that was 

developed in 1968 [3]. The frequency ranges of the EEG 

signal are segmented into some basic sub-bands, which are the 

delta band (0.5 - 4 Hz), the theta band (4 - 8 Hz), the alpha 

band (8 - 12 Hz), and the beta band (>12 Hz).  

1.1. An Overview of Sleep Stages 

Sleep can be divided into two entirely different behavioral 

states: Rapid Eye Movement (REM) sleep and non-REM 

(NREM) sleep. Initially, during the awake stage, the EEG 

shows mixed beta and alpha activities as the eyes open and 

close, and when the eyes remain closed, alpha activity is 

predominant. The EMG reflects the high-amplitude muscle 

contractions and movement artifacts. The EOG shows eye 

blinking and rapid eye movement. The frequency and 

amplitude of the various events will diminish as the subject 

stops moving and becomes drowsy. After the subject falls 

asleep, he or she enters into what is known as NREM sleep, 

which consists of four stages. Stage 1 sleep is the period in 

which the subject drifts off, i.e., a transition period from 

wakefulness to the three stages of NREM sleep. This period 

has a short duration, usually lasting between one and seven 

minutes. Sleep stage 1 is characterized by low voltage with 
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well-defined alpha and theta bands, mixed frequency EEG, as 

well as some slow, rolling eye movements and some relatively 

higher EMG activity. Stage 2 makes up the bulk of an average 

person's sleep each night, around 40% to 45%, and this stage 

can be recognized easily because of the presence of sleep 

spindles and K-complexes in the EEG waves. A sleep spindle 

is a rapid waxing and waning of the EEG waves in intervals 

of one to two seconds (about 12-14 Hz), while a K-complex is 

a large waxing and waning of a wave that somewhat resembles 

a mountain. Sleep stage 3 and sleep stage 4 are similar, and 

both fall into the category of slow-wave sleep (SWS) or deep 

sleep and they are so named because of the high amplitude 

delta waves in the EEG. Besides these four basic stages of 

sleep, a unique sleep stage exists, it’s called REM sleep, which 

is a very active stage of sleep that comprises 15-25% of a 

normal night’s sleep. During REM sleep, breathing, heart rate, 

and brain wave activity quicken, and vivid dreams can occur. 

Thus, this stage also is referred to as the dream stage [4]. 

1.2. Sleep Cycles 

In nocturnal sleep, a cycle includes NREM and REM 

sleep, and the cycles initially vary in length from 80 to 100 

minutes, and they may last from 90 to 120 minutes later in the 

night. There are about four to five cycles during a normal 8-

hour sleep period, so REM sleep follows NREM sleep, and it 

occurs four to five times. The first period of REM sleep during 

the night may be less than 10 minutes in duration, while the 

last may exceed 60 minutes. In adults, stage 1 sleep usually 

accounts for 2-5% of the night’s sleep, whereas stage 2 

represents 45 to 65% of total sleep time. Stages 3 and 4 SWS 

occur mostly in the first third of the night, and they constitute 

10 to 20% of total sleep time. REM represents 15 to 25% of 

total sleep time [5]. 

1.3. Emotional Arousal 

Arousal is an abrupt change from sleep to wakefulness or 

from a “deeper” stage of non-REM sleep to a “lighter” stage. 

An EEG-arousal in sleep is defined as an abrupt shift in EEG 

frequency, lasting for three seconds or more, which may 

include theta, alpha, and/or frequencies greater than 16 Hz, but 

not spindles. There are two basic types of arousal: transient 

arousals, which are shorter than three seconds and normal 

arousals, which last from three to thirty seconds. Transient 

arousals are shorter than three seconds, so they are easily 

confused with K complexes and sleep spindles [6] because K-

complexes usually occur close to the arousal changes from 

stage 2 to SWS.  

Following Schachter and Singer’s theories [7], the two-

factor theory of emotion states that emotion is a function of 

both cognitive factors and physiological arousal. Physical 

arousal plays a primary role in emotions. However, this 

arousal is the same for a wide variety of emotions, so physical 

arousal alone cannot be responsible for emotional responses. 

During sleep, the energy of the theta or alpha waves (or both) 

surges instantaneously when emotional arousals appear, 

followed then by the increase of the beta wave. A person will 

typically feel groggier when he or she is awakened from SWS, 

and its effect is to make the subject seem to fall into the REM 

stage. However, it is not actually REM sleep, and it seems to 

resemble a psychedelic phenomenon. So, the number of 

emotional arousal epochs can influence the distribution of 

sleep stages in total sleep, and the intensity of emotional 

arousal relates to reduced amounts of sleep and increased 

nocturnal activity. From a healthcare perspective, the 

assessment of the patient’s emotional state is essential in 

medical care. Thus, the assessments of epochs of emotional 

arousal can give us a fairly accurate view of the quality of a 

patient’s sleep.  In the past, many studies of the quality of sleep 

focused on insomnia states, sleep disorders [8], the 

recognition of arousal [9], and the relationships between the 

quality of sleep and emotions, including anxiety [10] and both 

positive and negative emotions [11,12,13]. However, previous 

studies have referred only to the parameters related to the 

quality of sleep in order to obtain specific results. This 

research considered the impact of the emotional arousal 

intensities on the quality of sleep and initially proposed a 

method of assessing sleep quality based on the three levels: I, 

II and III, corresponding to worst sleep, normal sleep, and 

good sleep, respectively. An automatic system is also 

proposed to classify sleep quality. 

2. Method 
2.1. Database  

2.1.1. Sleep Data 

EEG signals were recorded for 14 subjects (six males and 

eight females), whose ages ranged from 33-53 years old. The 

subjects did not use drugs or stay up late during the week of 

the tests. The sampling frequency was set to be 200 Hz. The 

NEC‖SYNAFIT1000 model was used to acquire the EEG 

brain waves. Data acquisition was performed using a general-

purpose data acquisition unit (NI USB6210, National 

Instruments). Sleep states were surveyed by sleep experts 

based on questionnaires with questions for the assessments of 

“Difficulty falling asleep,” “Had stresses during sleep,” and 

“Often awake for a moment while sleeping.” These questions 

could be rated 0-9, and the subjects were classified into three 

groups (worst sleep, normal sleep, and good sleep, which were 

expressed by the symbols I, II, and III, respectively). We 

classified the values of 7 - 9 as “very high”, 4 - 6 as “high”, 2 

– 3 as “normal”, and 0 – 1 as “low”. The sleep states of the 14 

subjects are listed in Table 1.  

We developed the acquisition and processing software 

and the configuration of the acquisition system. The 

acquisition period lasted more than six hours. The sleep 

technician scored cycles of sleep stages according to R&K 

rules based on 10-second epochs of the single channel (C3-

A1). The three sleep cycles that were obtained for each subject 

included information about all of the stages of sleep. The 

artifacts were removed manually by the group of sleep experts 

and the data are clean for researchers in this study. 
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Table 1. Sleep states of 14 subjects from the questionnaires 

No A B C D Groups 

1 true High high very high 

I 
2 true very high very high very high 

3 true High high very high 

4 true High very high high 

5 true normal normal high 

II 

6 false normal normal high 

7 true High normal high 

8 false normal normal normal 

9 false High normal normal 

10 false Low low low 

III 

11 false Low low low 

12 false Low low low 

13 false Low low low 

14 false Low low low 

A: Patients think that they are having psychological problems       B: The level of bad mood 

C: The level of stresses,                                                                   D: The level of “awake a moment during sleeping.” 

2.1.2. Emotional Data 

The emotion database from “Database for Emotion 

Analysis using Physiological Signals” (DEAP), available at 

http://www.eecs.qmul.ac.uk/mmv/datasets/deap/ was used in 

the assessment of the abrupt shift of EEG frequency and 

amplitude.  The electroencephalogram (EEG) and peripheral 

physiological signals of 32 subjects were recorded as each 

subject watched one-minute-long excerpts from 40 music 

videos.  

The subjects rated each video in terms of the levels of 

arousal, valence (scale ranges from unhappy or sad to happy 

or joyful), like/dislike, dominance, and familiarity. The 

sampling frequency of emotion data was 128 Hz. Frontal face 

videos also were recorded for 22 of the 32 subjects. A novel 

method for selecting stimuli was used, utilizing retrieval by 

affective tags from the last.fm website, ‘video highlight 

detection,’ and an online assessment tool. Only emotion data 

with low values of arousal were used in our tasks. 

2.2. Assessment of Emotional Arousal Epochs 

In this paper, we focused on EEG signals with a low range 

of arousal values in emotional data described above (or the 

subjects in the sleep). Arousal parameters were set by the 

ranges of 1 - 9 in emotional data corresponding to ranges of 

deep sleep to fully alert. We selected data with arousal values 

smaller than 4 in our experiments. Emotion data were 

surveyed to assess the abrupt shift of the EEG frequency when 

an emotion appeared, and the results were applied to the sleep 

data.   

Insomnia was conceptualized as a symptom of 

psychopathology, as was done in ‘Sleep Medicine Reviews’, 

especially in relation to mood disorders. Insomnia is 

characterized by strong positive and negative emotions or high 

emotional intensity. Higher levels of emotional intensity, 

defined as the frequency and intensity of the expression of 

emotions, were linked to reduced amounts of sleep and 

increased nocturnal activity. Emotional intensity was also 

considered in our experiments based on its density and 

changes in shape. It was possible to observe and examine the 

assessments from the analysis of the EEGs. 

2.2.1. Emotional EEG Segments 

Based on the database of emotions, we were able to 

determine visually that the emergence of emotion was linked 

to the appearance of a pulse in wavelet types and to the values 

of the dominant parameter associated with the number of 

pulses that appeared. In some cases, it is possible to see more 

complex types and shapes of the signals, but the cause was the 

mixture of the theta, alpha, and beta waves. Each pulse 

appeared for a duration of 0.5 – 3 seconds, and 1-second 

pulses were the most common size. There were some cases in 

which the length of the pulse exceeded three seconds, but such 

pulses were formed from the combination of multiple serial 

pulses. The pulses can occur with high or low densities and 

high or medium amplitudes, and the pulse densities and 

amplitudes were dependent on the emotional intensity; 

according to the database from some researchers [13], they 

focused mainly on human emotions. The emotions were 

assessed comprehensively with 16 emotional states and many 

parameters with a wide range of values. Referring to those 

databases also gave us similar results. Thus, it was very easy 

to see that the emergence of emotions and their intensities 

were related to the EEG pulses and their densities. Figure 1.a 

shows four emotional segments with different dominances. 

However, some cases may be detected incorrectly, so a few 

conditions must first be met [14]. 
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(a) 

 
(b)                                                                                                    (c) 

Fig. 1 Emotional arousal epochs in different intensities and densities 

(a) Four emotional segments with different densities; (b) The signal spectra in case of occurrence of emotions, and 

(c) The signal spectrum in the absence of the occurrence of emotions.
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Before an EEG arousal can be scored, subjects must be 

asleep, defined as > 10 continuous seconds of the indication 

of any stage of sleep. Arousals cannot be scored based on 

changes in submental (chin) EMG amplitude alone. A 

minimum of 10 continuous seconds of intervening sleep is 

necessary to score a second arousal. 

A “K complex” or “spindle” (a sub-band from 12 to 14 

Hz) occurring immediately before the EEG shift or following 

it is not included in the arousal duration. Parts of the EEG 

totally obscured by EMG artifact are considered as arousal if 

the change in the background EEG, in addition to the area 

obscured by EMG, is at least three seconds.  The alpha activity 

of fewer than three seconds duration in NREM sleep at a rate 

greater than one burst per 10 seconds was not scored as an 

EEG arousal. Three seconds of alpha sleep was not scored as 

arousal unless a 10-second episode of alpha-free sleep 

precedes it. 

Transitions from one stage of sleep to another are not 

sufficient of themselves to be scored as EEG arousals unless 

they meet the criteria indicated above. To assess energy 

distributions and the abrupt shift of EEG frequency in 

emotional arousal epochs, four bandpass filters were used to 

extract four basic EEG sub-bands, namely delta (0.5 - 4 Hz), 

theta (4 - 8 Hz), alpha (8 – 12 Hz) and beta (12 – 30 Hz). The 

power of sub-bands was checked after every segment of 200 

samples. 

 

Figure 1.b and 1.c shows an example of the signal spectra 

in two cases “with and without the appearance of emotions 

within the one-second segments”. It can be observed that in 

the case where the “subject is awakening,” the emergence of 

emotions occurs with the energy increasing suddenly at the 

theta or alpha bands (or both), while in the case where the 

“subject is sleeping,” an emotion appearance was 

accompanied by the emergence of alpha, theta and beta waves. 

The frequency-amplitude spectrum of each epoch used to 

check the shift in EEG frequency gave us similar results. 

Energy Ratio between Subbands 

Following the frequency-amplitude spectrum graph, the 

surges of theta, alpha, and beta waves were accompanied by 

the reduction of the delta wave. Thus, to assess the abrupt shift 

in EEG frequency, we set up three parameters: R1, R2, and 

R3, where R1 is the ratio of the theta wave’s power to the delta 

wave’s power, R2 is the ratio of the alpha wave’s power to the 

delta wave’s power, and R3 is the ratio of the beta wave’s 

power to the delta wave’s power, i.e., 

𝑅1 =
 power of  theta wave 

 power of delta wave 
; 

𝑅2 =
 power of alpha wave 

 power of delta wave 
; 

𝑅3 =
 power of  beta wave 

 powerof delta wave 
 

Fig. 2 Distribution of the cycles and sleep stages in nocturnal sleep 

A cycle = NREM + REM≈ 90-120 minutes 

Stage 1  

2-5% 

Beta, 

Alpha 

wave 

Alpha wave first (short) 

Theta wave (long) 
Delta wave Beta wave 

Beta, 

Alpha 

wave 

stage 2  

45-55% of a cycle 
SWS  

15-20% 

REM 

10-20% 

stage 1 

cycle 2 

last REM 

can last 60 

minutes 

Total sleep time from four to five cycles 

An extracted cycle 
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Table 2. Comparison of R1, R2, and R3 values between SSEs and EAEs 

 
Standard Sleep Epochs (SSEs) Emotion Arousal Epoch  

(EAEs) 
Overlapping ranges 

stage1+REM stage2 SWS 

R1 
range 0.067 - 0.732 0.12 - 0.47 0.042 - 0.176 0.54 - 2.27 0.54 - 0.732 

mean 0.42 0.28 0.073 1.24  

R2 
range 0.03 - 0.69 0.05 - 0.58 0.014 - 0.067 0.67 - 6.53 0.67 - 0.69 

mean 0.166 0.26 0.028 2.38  

R3 
range 0.044 - 0.623 0.02 - 0.14 0.0028 - 0.027 0.46 - 1.62 0.46 - 0.623 

mean 0.148 0.07 0.007 0.78  

We classified sleep into three stages: stage 1+REM, stage 

2, and slow wave sleep based on the distribution of the stages 

in a sleep cycle and consecutive cycles shown in Figure 2. The 

EEG signal analysis was performed on each epoch, and the 

results were considered statistically. The range and mean 

values of the parameters R1, R2, and R3. Were compared 

between EAE and Standard Sleep Epochs (SSE).  

The statistical results obtained from a total of 1200 epochs 

for each group of data have a p < 0.002. The results are shown 

in Table 2. By using the SSEs from a standard sleep database 

[13], EAEs were obtained. From Table 2, the differences 

among R1, R2, and R3 values of SSEs and EAEs are very clear, 

but there are overlapping ranges in the power rate values. 

Thus, if we apply only thresholds for R1, R2, and R3 to 

recognize EAEs, we may have trouble with some EAEs 

because the R1, R2, and R3 parameters are in overlapping 

ranges. To overcome these problems, an additional step in the 

checking procedure was used. 

Wavelet transform: The name ‘wavelet’ means a small wave 

or a wave that does not have an infinite length (as is the case 

for a sinusoidal wave).  As time-domain analysis of bio-

signals such as EEG does not provide frequency details. EEG 

signals are dynamic, sometimes appearing as spikes/bursts, 

and they are mostly non-stationary.  

Non-stationary signals are characterized by numerous 

transitory drift trends and abrupt changes. For practical 

analysis, we must know their frequency components and the 

time at which they occur. The wavelet transform can be 

viewed as transforming the signal from the time domain to the 

wavelet domain. This new domain contains more complicated 

basis functions, which are called wavelets, mother wavelets, 

or analyzing wavelets. If we have a signal x(t), the wavelet 

decomposition can be given as follows: 

𝑥(𝑡) =∑ ∑ 𝑑(𝑗, 𝑘)𝜓(2−𝑗𝑡 − 𝑘) +

∞

𝑘=−∞

𝐿

𝑗=1

∑ 𝑎(𝐿, 𝐾)

∞

𝑘=−∞

𝜑(2−𝐿𝑡

− 𝑘) 
  (1) 

The function ψ(t) is known as the mother wavelet, while 

𝝋(𝒕) is known as the scaling function. The number a(L,k) is 

known as the approximation coefficient at scale L, while  d(j, 

k) is known as the detail coefficient at scale j. 

Wavelet entropy: Wavelet entropy based on wavelet analysis 

is used to obtain the probability distribution, thereby reflecting 

the degree of disorder in optimal time-frequency resolution 

[15]. Wavelet entropy is calculated as follows: 

𝑬𝒘 = −∑𝒑𝒋. 𝒍𝒏(𝒑𝒋)

𝒋

 

 (2) 

With P, is the probability of energy appearing at the jth 

wavelet coefficients, calculated by the ratio of the energy of 

the jth wavelet coefficient to the signal energy tone. 

Calculate the wavelet entropy value for the omitted EAE 

when compared with the regular epochs, the results are shown 

in figure 3. 

  
(a) 

  
(b) 

Fig. 3 Difference between entropy values of regular epochs and EAE  

(a) Regular epochs and wavelet entropy values,  

(b) EAEs and wavelet entropy values 
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Misrecognized epochs are mainly transient emotions of 

the subject. Entropy values have skyrocketed compared to 

epochs. Normally, EAE (Emax/Emean = 2.56 ~ 3.02; p < 

0.02) compared to common epoch normal (Emax/Emean 

1,532.24; p<0,02). The above statistical results have shown 

that wavelet entropy is a tool for detecting low-energy EAE or 

moments of fleeting emotions. 

We can calculate the probability distribution from the 

wavelet decomposition equation: 

             𝑺(𝒕) = ∑ ∑ 𝑪𝒋𝒌
−𝟏
𝒋=−𝑵 (𝒌)𝝍𝒋,𝒌(𝒕) = ∑ 𝒓𝒋

−𝟏
𝒋=−𝑵 (𝒕)     (3) 

 

The function 𝑪𝒊(𝒌) is wavelet coefficients that are 

retained and 𝒓𝒊(𝒕) is the residual signal at scale j (j, k ϵ Z). The 

energy at each resolution level, + j = -1, …, -N, will be the 

energy of the detailed signal. 

                         𝑬𝒋 = ‖𝒓𝒋‖
𝟐
= ∑ |𝑪𝒋(𝒌)|

𝟐
𝒌              (4) 

So the energy at time k will be: 

   𝑬(𝒌) = ∑ |𝑪𝒋(𝒌)|
𝟐−𝟏

𝒋=−𝑵             (5) 

The total energy can be obtained from:  

𝑬𝒕𝒐𝒕 = ∑ 𝑬𝒋𝒋                    (6) 

From this, we can obtain the probability distribution 

based on relative wavelet energy:  

𝒑𝒋 =
𝑬𝒋

𝑬𝒕𝒐𝒕
                     (7) 

From equations (1) and (6), wavelet entropy is:  

𝑬𝒘 = −∑ 𝒑𝒋𝒋 ⋅ 𝒍𝒏(𝒑𝒋)                    (8) 

Relative wavelet entropy: Classical entropy-based criteria 

match these conditions and describe information-related 

properties for an accurate representation of a given signal. 

Many others are available and can be easily integrated. In the 

following expressions, s is the signal, and (si)i are the 

coefficients of s in an orthonormal basis. The entropy E must 

be an additive cost function such that E(0) = 0 and: 

The “Shannon” entropy is defined as  

                         𝑬𝟏(𝒔) = −∑ 𝒔𝒊
𝟐

𝒊 𝒍𝒐𝒈(𝒔𝒊
𝟐)             (9) 

The concentration in norm entropy with 𝟏 ≤ 𝒑is  

defined as    

𝑬𝟐(𝒔) = ∑ |𝒔𝒊|
𝒑

𝒊 = ‖𝒔‖𝒑
𝒑
           (10) 

The "log energy" entropy is defined as  

𝑬𝟑(𝒔) = ∑ 𝒍𝒐𝒈
∑(𝒔𝒊

𝟐)

𝒊                   (11) 

This study uses relative wavelet entropy and applies 

formula (9) to assess some EAEs that have been ignored to 

compare with the normal epochs of the standard data 

following formula (9). Each entropy value will be calculated 

in the duration of 200 samples. The “Shannon” entropy gives 

the best results in our experiments. 

The entropy assessment was applied to detect EAEs when 

their R values were in the overlapped ranges. Those EAEs 

were mainly transient EAEs or other EAEs with weak 

intensities arousals. If the epoch were considered as EAEs, 

then the max entropy of the epoch (Emax) is far greater than 

the average entropy (Emean) (Emax/Emean ≈ 2.56 -3.02; p < 

0.02) when compared with normal epochs (Emax/Emean ≈ 

1.53 - 2.24; p < 0.02). With some epochs that have sleep 

spindles and K complex, the entropy values were considered 

to avoid confusion (Emax/Emean ≈ 1.84-2.24 ; p < 0.02). 

The statistical results showed that the entropy assessment 

is a powerful tool which can detect EAEs. However, it is 

mainly applicable only for EAEs for which their R values were 

in the overlapped ranges. This method shouldn’t be applied to 

detect all of EAEs. Because if the R values are out of the 

overlapped ranges, we can determine with certainty that the 

epoch is an EAE or an SSE. Moreover, in the case where the 

intensity of emotional arousal is high enough to spread over 

the entire epoch, the Emax value will not be much greater than 

the Emean value. 

2.3. Sleep Stage Recognition 

A combined system of neural networks and fuzzy systems 

was applied to classify sleep stages  [14]. For our purposes, 

we classified a cycle of sleep into three stages: stage 1+REM, 

stage 2, and slow wave sleep) based on the distribution of the 

cycles and sleep stages as in Figure 2. In this research, Fourier 

filters were used instead of wavelet transforms to decompose 

the inputs and extract the features. A combined system of the 

neural network and fuzzy systems can recognize sleep stages 

with high quality. However, the identification of sleep stages 

is done with standard epochs (sleep data without emotion). A 

question worth considering is, “Does this system work well in 

accordance with sleep data that includes sleep disturbance? 

The answer is that this system can work well with data of 

disturbance sleep or sleep data with emotion. An emergence 

of EAE is always accompanied by surging alpha and beta 

waves, so EAEs may mislead the system to incorrectly 

interpret sleep stages.  

However, emotional arousals were focused on a few 

epochs, and their distributions were scattered such that they 

wouldn't significantly affect the recognition of sleep cycles 

and stages. In order to check the densities of each kind of 

epoch around the borders between the two stages, we assessed 

as closely as possible the bounds of each stage. Sleep experts 

performed a manual re-checking procedure to ensure that the 

results were correct.  

Dividing total sleep into 3 stages: stage1+REM, stage2, 

and SWS can easily classify the sleep cycle and sleep stages 

with high accuracy because each stage was represented by one 
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or two of four main waves only. Stage 1+REM are represented 

by Beta and Alpha waves, and stage 2 is represented mainly 

by Theta waves, while Delta waves represent SWS. 

Table 3. Distribution of epochs in each sleep stage of the cycles 

No 
Stage1 

and REM 
Stage2 SWS 

Stage1  

and REM 
Stage2 SWS 

Stage1 

and REM 
Stage2 SWS groups 

cycle 1 2 3  

1 123 344 87 156 304 109 271 243 68 

I 
2 129 311 49 241 263 75 195 309 102 

3 101 328 92 182 286 89 152 321 73 

4 255 246 84 136 292 93 235 276 58 

mean 152 307.25 78 178.75 286.25 91.5 213.25 287.25 75.25  

5 136 302 75 135 292 128 168 284 93 

II 

6 89 296 82 191 305 101 225 303 109 

7 118 284 101 133 246 92 168 335 132 

8 108 340 129 121 253 84 179 281 109 

9 93 297 101 104 265 107 142 301 98 

mean 108.8 303.8 97.6 136.8 272.2 102.4 176.4 300.8 108.2  

10 85 261 114 92 268 155 118 232 104 

III 

11 101 236 135 85 287 109 142 288 114 

12 66 273 161 89 264 92 133 241 136 

13 83 288 140 106 301 99 85 278 173 

14 77 242 132 82 268 143 112 251 117 

mean 82.4 260 136.4 90.8 277.6 119.6 118 258 128.8  

It was easy to analyze the influence of the length of the 

stages on the quality of sleep. In the first cycles, stage 1 was 

short enough to be removed as a means of obtaining stable 

data. The evaluation of the number of epochs or the 

distribution of sleep stages in each sleep cycle was very 

important because the number of epochs determines the 

lengths of the sleep stages, and the length of the cycles or sleep 

stages can give us information about the quality of sleep. To 

find the bounds between the two stages more accurately, a 

manual re-checking procedure was performed by sleep experts 

to ensure that the results were correct. The classified results 

are shown in Table 3.  

With more than six hours of recording data, three whole 

cycles were extracted that included a total of 22,071 epochs, 

5,742 of which were stage 1 and REM, 11,885 of which were 

stage 2, and 4,444 of which were “slow-wave sleep.” Stage 1 

and REM are approximately 26% of the total sleep time, stage 

2 is approximately 53.85%, and SWS time is approximately 

20.15%. 

2.4. Extraction of EAEs 

This step was the most important focus of this research: 

the specification of the extent of the emergence of EAEs (the 

density of EAEs) in each sleep cycle. From the analysis 

mentioned above, a procedure to extract EAEs was applied. 

Information about the number of EAEs in each cycle was 

marked, and the average numbers of EAEs for every subject 

for each sleep cycle were summarized, listed, and classified 

into one of the following three groups: group 1 with the worst 

sleep, group 2 with normal sleep, and group 3 with good sleep. 

The process of extracting EAEs was conducted step by step, 

as described below. 

Extract four sub-bands (delta, theta, alpha, and beta). 

Calculate the three parameters: R1, R2, and R3. Compare the 

parameters with the thresholds in the Table 2. 

• First we chose epochs that were out of the ranges of the 

standard epochs. Namely, the R1 value from 0.54 to 2.27, 

the R2 value from 0.67 to 6.53 and the R3 value from 0.46 

to 1.62. 

• Next, we summarize the epochs where the R1, R2, and R3 

values are in the overlapping ranges. Namely R1 value 

from 0.54 to 0.732, R2 value from 0.67 to 0.69 and R3 

value from 0.46 to 0.623. 

Apply the entropy method to detect transient EAEs. The 

number of EAEs for each group changed significantly, as 

shown in Table 4. 

From Table 4, we saw that the EAEs, including normal 

arousal epochs and transient arousal epochs, occur mainly in 

stage 1, REM and stage 2. EAEs of SWS were seldom 

detected in our experiments. In some cases, it appeared that 

the EAEs of SWS were mostly due to transient arousal, and 

they caused the phenomenon of a confused state. These results 

were in agreement with the results of other research that 



Bui Huy Hai / IJETT, 72(4), 333-343, 2024 

 

341 

investigated emotional arousal in slow-wave sleep [16]. They 

are often sudden arousals with a piercing scream or cry, such 

as the phenomenon of sleep terror, and such arousals are 

usually accompanied by autonomic and behavioral 

manifestations of intense fear, and they are rarely forgotten by 

anyone who witnesses such an event. The onset of these events 

is abrupt, and subjects would have tachycardia, tachypnea, 

flushing, diaphoresis, and mydriasis. The subjects often wind 

up confused and disoriented, and any attempts to intercede 

may result in harm to the person who is trying to wake the 

patient. Patients can become violent, resulting in injury to 

themselves and their bed partners. Our method was 

implemented as follows: The first step, After receiving EEG 

data from the subjects, EAEs were detected, marked their 

position then removed out of the input data to gain clean data 

for the procedure of sleep stage recognition. The checking to 

detect EAEs is based on three parameters, R1, R2, and R3, 

combined with entropy value assessment. After identifying 

EAEs in the input data, the next procedure that needs to be 

done is marking the positions of the EAEs in the surveyed data 

segment and then removing all of the EAEs to gain clean data 

for the process of stage sleep stages recognition. The next step 

is that we must total the number of EAEs in each stage. After 

the classification of sleep stages and defining boundaries 

between stages, EAEs positions that were previously marked 

can tell us about the EAEs corresponding to each sleep stage. 

By the way, every sleep cycle is also classified, and 

information about the number of EAEs in each cycle can also 

be defined. With the process of recognizing EAEs in each 

sleep stage, Our classifier achieved an average accuracy of 

87.5%. 

3. Method Results and Discussion  
3.1.  Results 

14 subjects, including six males and eight females, 

participated in these experiments. Sleep cycles and sleep 

stages were classified by a combination system of the neural 

network and fuzzy systems using only one EEG channel (C3-

A1). Three sleep cycles for each subject and three stages for 

each cycle provided a total of 22,071 sleep epochs (SEs). A 

total of 1,052 EAEs were obtained, with 537 EAEs in four 

subjects of group 1, 365 EAEs in the five subjects of group 2 

and 150 EAEs in the five subjects of group 3. The average 

number of sleep epochs and emotional arousal epochs that 

were calculated in every cycle for each subject are 

summarized in Table 5. The comparison table helped us 

determine the lengths of the cycles and the distribution of the 

sleep stages by determining the densities of the EAEs. The 

number of EAEs in each cycle clearly changes following the 

three levels of sleep quality, accompanied by the varying 

sleep-stage durations. The highest densities of EAEs were 

those related to disrupted sleep continuity, including a 

prolonged latency to REM and stage 2 sleep,  an increase in 

nocturnal awakenings, and a decrease in the amount of total 

sleep toward the end of the night when sleep pressure has 

largely abated. Much attention has been focused on changes 

in REM sleep, particularly the reduced latency of the onset of 

REM sleep. It has long been thought to represent a marker for 

patients’ moods and their complaints about insomnia and/or 

decreased need for sleep. It was found that the total number of 

slow waves was only slightly lower during late sleep than 

during early sleep. When EAE density is high (which may be 

related to a bad of insomnia), stage1 and REM may be longer, 

along with prolonged latency to stage1, and REM sleep might 

be the shortening SWS and vice versa. Hence, the reduced 

time of SWS resulted in serious mood symptoms for patients. 

During episodes of depression, patients usually report 

insomnia, including early morning awakenings. However, 

patients with typical depression may complain of excessive 

sleepiness. 

However, decrements in SWS have been consistently 

demonstrated in mood and other psychiatric disorders as well. 

Loss of SWS is often seen in primary insomnia [16], and thus, 

it is not surprising that it might also be present in other 

disorders for which insomnia is a major symptom. Moreover, 

from the redistribution of the length of the sleep stage, it seems 

that the lengths of the sleep cycles are changed during high 

densities of EAEs. These remarks are intended only as 

preliminary observations, and we plan to explore this subject 

in more detail in future research. 

3.2.  Discussion 

The sleep quality was classified into three groups, i.e., 

worst sleep, normal sleep, and good sleep. The densities of 

EAEs were assessed and summarized for each case. In our 

research, two parameters were considered (the number of 

EAEs focusing on each sleep cycle and the duration of slow-

wave sleep), and their relationship was used to rate sleep 

quality. Our results were in good agreement with the findings 

in previous research [17,18], and they indicated that the 

interaction between sleep and its effect on regulatory systems 

is modulated and integrated in regions of the prefrontal cortex. 

Sleep loss induces alterations in goal-directed behaviors by 

weakening the influence of the prefrontal cortex over other 

regions of the brain. This results in the reduced modulation of 

emotions, drives, and impulses. 

Table 4. Distribution of EAEs in each sleep stage of the cycles 

Cycles 1 2 3 groups 

1 51 42 46 

I 
2 39 43 37 

3 53 45 38 

4 43 48 52 

total 186 178 173 537 

mean 46.5 44.5 43.25  

5 31 22 30 

II 

6 18 21 28 

7 21 17 21 

8 25 19 26 

9 28 23 35 
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total 123 102 140 365 

mean 24.6 20.4 28  

10 9 9 17 

III 11 11 13 18 

12 8 12 11 

13 10 4 7 

14 4 7 10 

total 42 45 63 150 

mean 8.4 9 12.6  

                                           Table 5. Average number of EAEs and SEs following sleep quality levels 

No 
Stage 1 

and  REM 
Stage2 SWS 

Stage 1 

and REM 
Stage2 SWS 

Stage 1 

and REM 
Stage2 SWS 

Groups and a 

total of EAEs 

 1 2 3  

ANSEs 152 307.25 78 178.75 286.25 91.5 213.25 287.25 75.25 I 

ANEAEs 46.5 44.5 43.25 537 

ANSEs 108.8 303.8 97.6 136.8 272.2 102.4 176.4 300.8 108.2 II 

ANEAEs 24.6 20.4 28 365 

ANSEs 82.4 260 136.4 90.8 277.6 119.6 118 258 128.8 III 

ANEAEs 8.4 9 12.6 150 

 for ANSEs: average number of SEs  and ANEAEs: average number of EAEs  

 During the emergence of EAEs, there were increases in 

alpha and beta waves, and this made the subjects drift into 

SWS in some cases. Suppose beta waves are focused with high 

densities in SWS. In that case, subjects will experience sudden 

arousal from SWS, and that will be accompanied by 

autonomic and behavioral manifestations of intense fear, 

which are rarely forgotten by anyone who has experienced the 

event. The onset of the event is abrupt, and patients may have 

tachycardia, tachypnea, flushing, diaphoresis, and mydriasis, 

and the subjects typically will feel groggier.  

The patients are confused and disoriented, and any 

attempts to intercede may result in harm to the person trying 

to wake the patient. Much sleep transfers from SWS to REM, 

which causes the prolonged latency of REM and the 

shortening of SWS, so the sleep cycle may be reduced. If 

EAEs focused on stage1 and REM or stage 2 when subjects 

were in dissociated sleep states, the arousal factors would be 

in the transition from this stage to other stages of NREM, 

between wakefulness and NREM sleep or wakefulness and 

REM sleep. The bad mood during sleep causes sleepers 

difficulty in drifting into SWS. In this case, stage1 REM or 

stage 2 may be prolonged, which leads to the reduction of 

SWS time, which decreases the quality of sleep. 

As we know, REM sleep is the stage with a surge of beta 

waves, and when subjects leave NREM sleep, dreams may 

begin to occur. During this time, the patient’s mood is active 

and some EAEs will occur. However, a high density of EAEs 

is related to abnormalities in REM sleep. Abnormalities in the 

parameters of REM sleep are also significantly associated with 

mood disorders. A few examples are: short REM latency has 

been associated with increased risk for relapse, and increased 

REM sleep has been related to increases in cholinergic 

activity, which also indirectly causes the decrease of SWS 

time due to the increased activation of the thalamus and cortex 

during sleep [19]. The quality of sleep is actually related to 

many factors, including heart rate, respiratory rate [20, 21], 

and a combination of several other psychophysiological 

signals. 

According to McCrae et al. (2008) [11] and Norlander et 

al. (2005) [12], sleep quality is related to both poles of 

emotion, Negative Emotion (NE) and Positive Emotion (PE), 

with a higher PE correlating to a higher self-reported sleep 

quality and less wake time, and a higher NE with a lower PE 

correlating with a lower self-reported sleep quality and greater 

wake time. However, based on our research, high PE and NE 

are actually associated with high densities of EAE and low PE 

and NE are associated with low densities of EAE. So, a proper 

method could be to focus on emotional arousal densities. 

Based on the discussion above, we can conclude that the 

number of emotional arousal epochs or EAEs’ densities 

actually influence the distribution of the durations of the sleep 

stages and sleep quality. 

4. Conclusion 
This study proposed a method to evaluate sleep quality 

based on EEG signals, and the preliminary results were 

satisfactory for our purposes.  In this research, we focused on 

a single parameter, which is emotional arousal. Sleep quality 

was assessed based on emotional arousal densities, or the 

number of EAEs converged on each sleep cycle. Also, only 

one emotion parameter (emotional arousal) was mentioned. 

http://en.wikipedia.org/wiki/NREM
http://en.wikipedia.org/wiki/REM_sleep
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However, the valence values of emotion (from unhappy 

to happy) or negative emotion and positive emotion also 

closely relate to the quality of sleep. Furthermore sleep quality 

was evaluated based on each sleep cycle. For this reason, in 

order to improve the assessment of sleep quality, a full 

assessment will be included in our future studies with the 

consideration of many related psychophysiological 

parameters. The data samples, subjects and the length of sleep 

intervals will be increased in our future experiments to 

improve the assessment quality. 
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