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Abstract - The present study puts forward the model formulations of Stepwise Multiple Regression Analysis for obtaining the
value of Normalized Production Rate and Pick consumption per 1000t of surface miners operating in opencast coal mines of
Mahanadi Coalfields Limited. A total of 143 data entries have been compiled to develop models. The entries contain Uniaxial
Compressive Strength Index, Cerchar Abrasivity Index, In-situ P-Wave Velocity, and Normalized Production Rate and Pick
Consumption per 1000t. Two models have been formed independently to determine the Normalized Production Rate and Pick
Consumption per 1000t. The two models have been developed and generated with the help of Minitab. The models have been
formed with the forward selection and backward elimination method of stepwise regression techniques. The Student’s T-tests
have been carried out on models to determine which of the predictors are most significant. The results also reveal that the
accuracy of models formed using statistical models is high and provide easy accessibility to predisposed engineers of surface
miners to obtain estimations of Normalized Production Rate and Pick Consumption per 1000t. The models formed with statistical
techniques provided appropriate results and can be effectively employed in opencast coal mines with similar geotechnical

conditions.
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1. Introduction

To satisfy the growing demand for faster production, the
opencast coal mines have gradually adopted the use of mass
production methods, mainly through the incorporation of
surface miners. A surface miner is also known as a continuous
surface miner. It combines extraction, crushing, and loading in
a single process operation [1, 2]. Coal extraction through the
usage of surface miners has proved more efficient, attracting
a significant amount of research work for improving their
efficiency. There has been a substantial amount of work
carried out related to cutting performance predictions in
surface miners. A significant part of existing models has been
generalized predictive models that have been derived based on
data drawn from different types of rocks [3-7]. Although
models based upon machine parameters alone have
underemphasized the importance of rock mass parameters in
a substantial way, models based upon rock mass parameters
often neglect a few important machine-related parameters in
surface miner models. Recent models attempted based upon a
broad spectrum of machine-related parameters that encompass
intact rock properties, rock mass properties, machine
properties, and geo-mining parameters have been generalized
and are strongly predictive in nature. For instance, models
based on multiple regressions were developed by Prakash et.

al. (2024) [8] in evaluating cutting speeds in surface miners in
coal and limestone settings. Although they are considered
valuable, such models may also pose limitations when applied
to specific pairs of geo-mining factors and machine
parameters. Additionally, the impact caused by the dirt bands
on the cutting performance of surface miners has received
little or inadequate attention and research in past research
efforts. As such, it has become necessary to study further the
simultaneous influence exerted by intact rock, rock mass, and
machine parameters on the geo-mining process concerning
coal seams with intercalated dirt bands.

2. Literature Review

Various parameters tend to affect the performance level of
surface miners. Four major groups of these parameters have
been identified for classification and understanding purposes.
They include rock parameters for intact rock and rock masses,
parameters for machines and equipment, and operational
parameters. The intact rock parameters that tend to affect the
cuttability process include several rock properties that tend to
be either mechanical, physical, or strength-related. On the
other hand, rock parameters take into consideration the
structural and geological discontinuities that exist within the
rock environment. Moreover, parameters that relate to the
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machines tend to have an intensive influence on performance
[9]. Understanding these variables is essential for selecting
appropriate excavation systems and optimizing surface
mining operations. Consequently, several empirical models

Table 1. Types of variables influencing the cutting performance of surface miners

have been developed in previous studies to predict Key
Performance Indicators (KPIs) such as productivity, pick
Consumption, and diesel consumption, using various
combinations of these influencing parameters [10].

Type Variables
Brazilian tensile strength, Brittleness index, Cerchar abrasivity index, Density, Firmness index, Moisture
Intact Rock . . . . . .
Parameters content, Point load strength index, P-wave velocity, Specific energy consumption, Uniaxial
Compressive Strength (UCS), Young’s modulus
Rock Mass Ash/impurities/silica content, Dirt bands/intrusions, In-situ P-wave velocity, Joints/discontinuities, Rock
Parameters Quality Designation (RQD), Schmidt rebound hardness number, Stickiness, Volumetric joint count.
. Breakout angle, Cutter power, Drum diameter, Drum width, Ratio of Energy transfer to the cutting
Machine ) . . . . . . . .
drum, Engine power, Machine weight, Number of picks, Pick lacing pattern, Pick material, Pick
Parameters . .
orientation
. Available face length, Available face width, continuous mining method) Cutting speed, Depth of cut,
Operational . . .. . . . .
Parameters Direct loading, empty travel back method, Mining technique (e.g., Operator efficiency, Side-casting,
turn back method, Wet or dry cutting, Windrowing
Cutting Performance, Laminar Cutting Performance of
or Brittle Soft Rock (Such As Coal) The Wirtgen 2200 Sm Surface Miner
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Fig. 1 Cutting performance of surface miner: (a) 2200 SM 3.8, and (b) 2200SM.

As seen in Figures 1(a) and 1(b), the manufacturers of
surface miners only used one rock parameter-the undefined
compressive strength-to characterise the cutting performance.
In this case, cutting performance (m3/hr) is determined by the
volume of material cut relative to cutting time, or effective
hours of cutting. Manoeuvring and servicing time are not
accounted for. Rock’s UCS is thought to be the most accurate
measure of cuttability, and as compressive strength rises,
cutting rate falls [11]. The cutting performance of surface

miners, as illustrated in Figures 1(a) and 1(b), demonstrates a
strong inverse relationship with the Unconfined Compressive
Strength (UCS) of the rock. Figure 1(a) presents the cutting
performance of a surface miner in laminar or brittle soft rock
(e.g., coal), comparing two operational configurations-
standard and optimized for soft rock. The optimized
configuration achieves significantly higher productivity,
particularly at lower UCS values (up to ~1800 m*h at UCS =
0 MPa), with performance gradually decreasing as UCS
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increases to 35 MPa. In contrast, the standard setup yields
lower performance throughout, with the productivity gap
narrowing as UCS increases. Whereas Figure 1(b) displays the
cutting performance of the Wirtgen 2200 SM surface miner
under different operating conditions, including windrowing
and conveyor loading in various rock mass structures (loose,
fine-jointed, coarse-jointed, and massive) [9]. The highest
cutting performance (~750 m*h) is achieved during
windrowing in loose rock at low UCS values.

In contrast, performance declines markedly in more
competent and massive rocks under conveyor loading,
reaching below 100 m3/h for UCS values near 100 MPa. The
performance hierarchy clearly shows that rock mass structure
and the method of material handling substantially influence
cutting efficiency [4].

Figures 1(a) and 1(b) collectively emphasize that surface
miner cutting performance decreases with increasing UCS
[12]. Optimized machine configurations (Figure 1(a)) and
favourable operating conditions, such as windrowing in loose
rock (Figure 1(b)), significantly enhance productivity.
Machine efficiency is highest in low-strength, well-
fragmented rock masses and lowest in high-strength, massive
formations, underlining the importance of selecting suitable
equipment and operational strategies based on geotechnical
site conditions [13].

Abrasiveness is a key characteristic of rock or coal that
affects cutting pick wear and pick maintenance costs, and
consequently affects output rate. Because coal quality varies,
the abrasivity differs from site to site. According to reports,
the average pick life at SECL mines ranged from 275 to 681
hours, and the rate of abrasion of cutting picks is strongly
impacted by the coal quality (silica content) [22].

The Cerchar abrasivity test can be used to evaluate the
abrasivity of rock. Pick wear is an ongoing process, and in
order to precisely measure it, the weight loss of all the picks
in relation to the amount of material cut must be correlated.
This is not a practical method because it requires stopping the
machine for a considerable amount of time. Picks are changed
only after the tungsten carbide insert is totally worn out, and it
is determined that it is no longer able to cut the material. If no
pick is replaced on a given day, it indicates that none of the
picks have deteriorated to the point where they need to be
replaced, not that there is no pick wear. Therefore, picks that
are changed every day in terms of material cut will vary
greatly and cannot be utilised to indicate pick Consumption or
wear rate. According to a report, the coefficient of correlation
between pick consumption and the daily and monthly
production of coal was 0.6643 and 0.9092, respectively [15].
In order to account for changes and provide a more accurate
picture of pick consumption, the authors of this research
averaged pick replacements over a period of one month or
more.
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Origiliasso C et al. (2014) have created an empirical
relation for calculating the production rate of surface miners
by taking into consideration UCS, Cerchar’s Abrasivity Index
(CAI), and engine power (P,) in kW as the main
characteristics influencing productivity. This relationship is
founded on data from equipment makers and experimental
data. In addition to cutting time, the output rate accounts for
time spent on ancillary tasks like manoeuvring and servicing.
Usually, the materials having a CAI value of 0.5 are
considered easy to dig and non-abrasive [3]. Furthermore, the
production rate will be influenced by the machine’s power.
Rocks with a higher UCS can be cut by a machine that is
heavier and more powerful. This equation’s primary flaw,
though, is that it totally ignores the properties of the rock mass.
Dey and Ghose (2008) created a cuttability index for the first
time. It is a composite of the following factors: machine
power, rock abrasivity, volumetric joint count, direction of
cutting relative to the major joint orientation, and point load
strength index. This index provides an initial assessment of the
surface miner’s applicability. If the value of the cuttability
index is found to be greater than 80, then the deployment of
surface miners is not recommended. Based on the cuttability
index, a model was developed to predict the production of
surface mining in m*hr using the rated capacity of the
machine in m%hr as another variable. The relationship
considers machine and operating factors, intact rock, and rock
mass. However, there is ample room for investigation because
the value of the proportionality constant falls between 0.5 and
1. All the above researchers have developed relationships for
estimating the productivity of surface miners only.

On the other hand, in their outstanding research, Prakash
et al. (2015) created the Rock Cuttability Index for Surface
Miners which is used to estimate Key Performance Indicators
(KPIs) of surface miners viz., TPH (production in tonnes per
hour), DCT (diesel consumption/1000 t) and PCT (pick
consumption/1000 t) [16]. The models are summarized in the
table below.

Table 2. Models developed by different researchers

Author Year Model
Jones and 1995 Pq
Kramadibrata = 1005 — 559 Log (UCS)
. g PR
OrlglhilSSO et | 5014 = (2 x EP — 600)
al. % @—0.024 {10x(CAI-0.5)+UCS}
CI
Dey and Ghose | 2008 L = (1 - W) K x Mc
TPH = 181.5 I, ***°
Prakash et. al. | 2015 DCT = 338 x I, **°
PCT = 2 X Ig, '8
Acronyms - Pr = production rate of surface miner; UCS =
uniaxial compressive strength; EP = engine power; CAI =
Cerchar’s Abrasivity Index; L* = production of surface
miner; CI = cuttability index which is a composite of the
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following factors: Machine Power (M), Rock Abrasivity
(Aw), Direction Of Cutting With Regard To Major Joint
Orientation (Js), Volumetric Joint Count (Jv), and point
load strength Index (Is) calculated using the equation CI =
Is + Jv + Aw + Js + M; Mc = rated capacity of the
machine; k = proportionality constant whose value ranges
from 0.5 to 1; TPH = production in tonnes per hour; DCT
= diesel consumed/1000 t; PCT = pick consumed/1000 t;
Ism = Rock Cuttability Index for Surface Miners calculated

000 ME, where, MF = Machine
R P X cAx Cs
factor calculated using MF = T I IRF is Intact Rock

Factor calculated using IRF = Ex CAIxLVp ; RMF

uis ; CA
RN
contact area of the cutting drum calculated as CA =
Pty

ZT[RCOST[(()RD)/R] DW; CS is the speed of cutting (m/min);
E = Young’s modulus (GPa); LV, = laboratory p-wave
velocity (km/s); IV, = in-situ p-wave velocity (m/s); RN =
rebound harness number

using equation Igy =

Rock Mass Factor calculated using RMF =

Cutting speed and Depth of cut are two input factors that
depend on rock strength in these relationships. Additionally,
the developed relationships encompass ten distinct factors,
making KPIs time-consuming and intricate. The machine’s
operational weight is a crucial factor that will affect the
surface miner’s KPIs. Because the cutting drum is towards
the bottom, the machine’s weight makes cutting easier and
enhances pick penetration [17]. Furthermore, to achieve
enough reaction force and vibration-free cutting motion, the
engine power-to-operating weight ratio must be proportionate.
The fuel efficiency of the machine improves as the ratio
increases. This becomes noticeable while cutting through the
hard or dirt bands that are interwoven throughout the coal
seam. When cutting dirt bands, there is a potential that the
machine will vibrate if its weight is lower.

Contemporary developments in rock excavation
mechanics and energetics involve improving the
understanding of the basic process controls that define rock
excavation efficiency, force requirement, or cutter wear
mechanisms. Using fracture mechanics theories, Wang & Su
(2019b) studied the cutting process using a conical pick in
rocks, showing that rock fracture toughness, elastic modulus,
or Depth of cut are primary controls in specific energy
consumption or force coefficient, whereby specific energy
consumption increases remarkably with rock elastic modulus
while only a small fraction of the mechanical work input
contributes to the generation of new fracture surfaces during
rock breakage [18]. On the other hand, applying full-scale
tests to jet-assisted rotary drilling, J. Yang et al. (2019) studied
full-scale tests to investigate rock responses to different rock-
drilling conditions using jet-assisted rock drilling technology,
providing a comparative energy analysis functional in
designing optimized drilling mechanisms [19].
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Thermal phenomena at the tool-rock contact have also
been of concern. Kumar et al. (2020) carried out an analysis
involving experiments and modeling with conical pick cutting
to understand related thermal phenomena and utilize the
design of experiments for parameter optimization. In this
analysis, results indicated optimized solutions for parameter
sets that can minimize tool tip temperature and prevent wear
factors that would otherwise affect operational reliability [20].
On a more general scale, Zhang and Ouchterlony (2022) have
carried out a study combining research findings for rock
breakage specific energy and established related perspectives
for specific energy in surface miners that relate to minimum
specific energy models applied for studies related to analysis
and optimization [21].

More recent works include the use of data-intensive
models for cutting force prediction and tool performance
analysis. Morshedlou et al. (2024) introduced an ensemble
learning and regression model for cutting force estimation in
conical cutters based on rock mechanical properties and cutter
and rock contact area. Their best ensemble models using
Explainable Al (XAI) delivered the best results for cutting
force estimation and have potential applications for tool
selection and cutting force estimation [22]. Zhao et al. (2024)
further extended these studies by combining experimental
results and numerical analysis to assess the dynamic reliability
and wear behavior of picks mounted on cutting drums
operating under harsh working conditions. They identified the
typical wear behavior of picks and stress concentrations for
designing cutting drums and assessing pick wear life [23].

Considered collectively, these works represent a
progression from fundamental fracture mechanics analysis to
system-level testing and analysis through to modern machine
learning models for prediction. This work establishes a strong
scientific foundation for advancing cutting efficiency,
minimizing tool wear, and providing optimal mechanical
excavation system designs and usage practices.

3. Research Gap

Although there is an existing literature scope on surface
miner performance, the research covering these aspects has
remained deeply oriented to the parameters of intact rock, rock
masses, machine setup, and operating conditions. This paved
the way for the creation of performance indicators, namely the
Cuttability Index (CI) and Rock Cuttability Index for Surface
Miners (RCISM), and Empirical Relations Involving Uniaxial
Compressive Strength (UCS), Rock Abrasity, and Engine
Power. Nonetheless, most of this research has remained
concerned with relatively homogenous rock, namely coal and
limestone, having relatively low variations within the seams.
Conversely, most of the Indian opencast mines, where coals
are excavated, tend to display pronounced stratigraphic
heterogeneity, where dirt bands, shales, and variations of ash
content manifest with prompt changes in surface miner
cuttability, cutting force, picks, and machine utilization. Such
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heterogeneities are currently underrepresented in current
modeling approaches despite the fact that parameters such as
the level of silica content, ash percentage, joint density, and
moisture content are proven to significantly impact pick life,
cutting energy demand, and cutting rates. This aforementioned
fact makes the above-mentioned performance dynamics of
surface miners, when operating in coal mines where the seam
appears together with bands of intercalated dirt layers,
inadequately forecasted, thereby emphasizing an existing gap
in the used methods. This thereby forms the justification that
an immense possibility exists within the design of an easy-to-
use predictive version able to forecast significant performance
indicators of surface miners concerning normalized cutting
rates and pick wear consumption.

4. Site Description and Methodology

In an effort to achieve a better insight into the variables
that determine the performance of Surface Miners, especially
while coal cutting in the presence of intercalated dirt bands, an
in-depth survey has been done in the ten opencast coal mines
of Mahanadi Coalfields Limited (MCL) in the state of Odisha,
wherein the coal mines have high ash content and the regular
occurrence of interlaced dirt bands of varying thickness from
10 cm to 150 cm. The research emphasized the development
of predictive models on the basis of Key Performance Indices
(KPIs) of surface miners, viz., production rate and pick
consumption. The diesel consumption component of the KPI
has not been taken into account, being influenced by various
non-geological and non-operational parameters alongside
machine age, maintenance level of engines, and operator
expertise, apart from the tonnage cut. As a measure to ensure
equal comparison of production rates with varying makes and
models of surface miners, the chosen parameter replaced the
absolute value of the production rate called the Normalized
Production Rate (NPR) with a definition that stated the
tonnage of material removed per unit area of the drum per hour
and expressed in t/h/m? The Pick Consumption Per 1000
tonnes of material removed (PCM) parameter has been
considered, along with generally accepted norms of earlier
research works [24]. The prime aim of the predictive models
has been to reasonably predict the removal rates within geo-

mining conditions, with a special focus on coal seams with
intercalated dirt bands.

5. Data Collection

To achieve this objective, a dataset comprising 143
observations has been compiled from the designated study
locations. Out of the total number of observations, 127 were
used to train the model, while 16 others were set aside to test
the model. The observations were gathered through machine
usage hours, material excavated quantities and types, and
picks consumed. Machine usage hours did not factor in
standby and maintenance time. The material quantities
variable considered the total coal and dirt bands excavated by
the surface miners. The pick consumption data were obtained
through daily inspections, whereby the picks were inspected
at the start of the working day, and the worn-out picks were
replaced with new ones.

The movement of the surface miners was traced through
the high-accuracy navigation system. A non-destructive
technique was used to measure the in-situ sonic velocity of the
coal seam. The technique is called In-situ seismic refraction
tomography, and the procedure followed was according to the
guidelines set by the ASTM E494-20 standard. Moreover, the
NX-size cores, 3 m long, were extracted through the core
drilling equipment for a better insight into the characteristics
of the coal seam and the dirt band. The standards used for
laboratory analysis are presented in Table 3. The sample
preparation for performing the tests was conducted according
to 1S:9179-1979.

Table 3. Standards adopted for the laboratory determination of intact
rock properties

Properties Standard adopted
Bulk density 1S:13030-1991
CAl ASTM D7625-10
E 1S:9221-1979
UCS 1S:9143-1979

A statistical summary of the input and output variables
used for development of the model (excluding the data kept
for validation) is presented in the table.

Table 4. Statistical summary of the variables for model development

Type Variable Count Minimum Maximum Mean StDev Median

Input UCS 127 135 25.01 21.429 3.404 22.45

Input CAl 127 0.125 0.216 0.17727 0.02105 0.18

Input E 127 111 3.781 2.1751 0.6291 2.23

Input IVp 127 511 1369 966.1 193.6 1011
Output NPR 127 14720 32352 20132 4484 18646
Output PCM 127 0.67 3.42 2.0461 0.5699 2.1

The dataset has four input variables: Uniaxial two output variables: the Normalized Production Rate (NPR)

Compressive Strength (UCS), Cerchar Abrasivity Index
(CAI), Young’s Modulus (E), and P-wave Velocity (IVp), and
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and the Pick Consumption per 1000 tonnes (PCM). The
minimum and maximum values of the UCS are observed to be



Om Prakash Singh et al. / IJETT, 74(1), 259-274, 2026

13.5 and 25.01 MPa, respectively, with the average and
standard deviation at 21.429 MPa and 3.404 MPa,
respectively, thereby implying moderate variation. The CAI
ranges between 0.125 and 0.216, with the average and
standard deviation at 0.17727 and 0.02105, respectively,
thereby implying low variation in the abrasivity aspects.
Young’s modulus varies between 1.11 GPa and 3.781 GPa,
with the average and standard deviation at 2.1751 GPa and
0.6291 GPa, respectively, thereby implying moderate
variation. The P-wave Velocity contains the highest level of
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variation among the variations presented, ranging between
511 m/s and 1369 m/s, with the average and standard deviation
at 966.1 m/s and 193.6 m/s, respectively. For the output
parameters, the range for NPR is between 14.720 and 32.352
thousand tons/day, with an average of 20.132 thousand
tons/day and a standard deviation of 4.484 thousand tons/day,
which is highly variable in the production process. The range
for PCM is between 0.67 and 3.42, with an average of 2.0461
and a standard deviation of 0.5699, indicating moderate
variability.

IVp B NPFE W PCM
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Fig. 2 Box-plot showing distribution of the standardised values of input and output variables

It can be observed that this dataset ensures a good
variability in input and output variables that can be used in the
development of predictive models that are meaningful from a
statistical perspective. Variability in the data provides a
reasonable basis for determining relationships between
variables related to rock mass properties and surface miner
performance indicators.

6. Stepwise Multiple Regression Analysis

Stepwise Multiple Regression Analysis was performed
using the Minitab software. Multiple Linear Regression
(MLR) is an analytical method used for modeling the
relationship between the dependent variable and a set of
independent variables. This represents the mathematical
relationship of the variables, which are commonly employed
for predicting the response and understanding the relative
impact of measures of the variables within the environment.

MLR assumes a linear relationship exists between the
dependent and independent variables. Even in situations
where the proper functions are less linear, linear
approximations can still be applicable for modelling. Indeed,
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in relation to other evolved methods, for instance, Artificial
Neural Network (ANN) models, Adaptive Neuro-Fuzzy
Inference System, or Tree-Based models, Multiple Linear
Regression appears to be less complex in terms of
computations while still being efficient. The general equation
of the proper function in the form of the regression function
appears in the following equation.

y =P+ XL Bix; + €

Where Y denotes the estimated response or dependent
variable, Sy refers to the intercept of the regression line; f;
represents the slope parameters or coefficients associated with
the predictors; x; denotes the independent variables; and ¢
signifies the random error component that captures the portion
of variability unexplained by the actual regression function
and cannot be entirely removed or minimized.

The presence of a large number of potential predictors in
a single model may lead to problems such as overfitting,
multicollinearity, and reduced interpretability. It is therefore
essential to identify the optimal subset of predictors to ensure
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model strength. The stepwise multiple linear regression
procedure is one common technique for accomplishing
variable selection.

Stepwise regression is a semi-automated process whereby
the addition or deletion of variables is done based on
predetermined criteria set by the researcher using appropriate
mathematical or computational models and processes. The
process aims to strike a balance between achieving simplicity
within the model and maximizing predictability, with the
understanding that not all variables may influence the outcome
equally or independently. These criteria include, but are not
limited to, the p-value and the adjusted R?, Akaike Information
Criterion (AIC), and Bayesian Information Criterion (BIC),
discussed later on. Out of the various methods used for
stepwise regression, the two most commonly employed
methods are forward selection and backward elimination.

The forward selection method involves beginning the
process by considering a model that includes the constant term
alone. The next step involves selecting the predictor that
results in the most significant improvement in the model at
each stage and adding it to the existing model. The process
continues this way until no additional variable enters the
model that meets the specified criterion for entry. The forward
selection method is practical when many variables are
available for selection, though few of them are expected to
enter the equation as significant variables. Additionally, this
method does not introduce multicollinearity at the initial
stages of the process.

In contrast, backward elimination uses a reverse
approach. It begins with a complete model including all
candidate predictor variables. At each step, the variable having
the highest p-value-that is, the variable which shows least
statistical significance-is eliminated from the model. The
model is then re-estimated and the process repeated in order
to ensure that the remaining variables have p-values below
some pre-specified value. This method has many advantages
when the initial set of predictors is somewhat limited in
number, and many of these predictors are presumed to be
statistically insignificant. Nonetheless, the backward
elimination process may be computationally demanding when
the number of predictors is significant, and its performance
may be adversely affected by the inherent multicollinearity of
the whole model.

Although it is powerful for model simplification and
increasing interpretability, they do suffer from some
limitations, 1i.e., neither of the methods guarantees
identification of the globally optimal model, as both exclude a
comprehensive evaluation of all possible combinations of
predictors. Furthermore, stepwise methods are susceptible to
the sequence effects of variable entry or removal, such that
slightly different data and/or criteria may yield divergent
results. Neither method considers variable interactions if they
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are not explicitly included. Sometimes, stepwise regression
could be considered better suited for a given scenario than
machine learning models. By using stepwise regression,
parameter estimates are readily determinable, and statistical
inference is possible in a simple and comprehensible manner.
This is specifically important in a particular scenario where
explaining variable effects is of prime importance rather than
predicting them. Additionally, in stepwise regression, smaller
amounts of data are sufficient for the proper functioning of
regression analysis, and the process is less computer-intensive
compared to most machine learning models, which require
larger amounts of data and quite often extensive parameter
tuning to counteract overfitting.

7. Evaluation Criteria for the Developed Models

Evaluation of multiple linear regression models involves
statistical soundness and predictive performance. For the
purpose at hand, several quantitative criteria have been
developed for investigating model adequacy, parsimony, and
reliability in making predictions for unseen data. The
commonly used measures are p-values, the coefficient of
determination R2, adjusted R2, AIC, BIC, and Cp of Mallows.
Each metric performs a different evaluative function to
contribute to informed variable selection and model
comparison.

7.1. p-Value

The p-value is an assessment of the significance of
individual predictors in the regression model, assuming that a
specific regression coefficient equals zero. The dependent
variable remains unaffected. A lower p-value, typically below
0.05, suggests that the associated predictor contributes
significantly to the model. In stepwise regression analysis, p-
values provide a basis for the addition of a variable or for
shrinkage. However, relying exclusively on the p-value is not
always appropriate, especially when there are problems with
multicollinearity and small sample size.

7.2. Coefficient of Determination (R?)

The coefficient of determination, denoted as R?, indicates
the percentage of the dependent variable’s variance that can
be accounted for by the independent variables. Its range is
from 0 to 1. It reflects the better performance of a model when
it is high.

For instance, 0.75 of the R*> would suggest that the
predictors account for 75% of the variability in the response
variable. Although intuitively appealing, R*> has one natural
Achilles heel: its value never decreases with the addition of
more predictors, even those that bear no explanatory
relevance.

7.3. Adjusted R’

Adjusted R? overcomes the limitation of R? by penalizing
the addition of non-informative predictors. It adjusts the
coefficient of determination based on the number of predictors
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and the sample size, hence guarding against overfitting. In
contrast to R?, adjusted R? may go down when an added
variable does not increase the performance of the model, and
it is, therefore, more reliable in comparing models with
different numbers of explanatory variables.

7.4. Akaike Information Criterion (AIC)

The Akaike Information Criterion is one of the most
commonly used information-theoretic measures for
comparing models.

By evaluating the goodness-of-fit against the model
complexity, it provides a relative quality of the model and is
defined as:

AIC = 2k —2In(L)

Where k represents the number of parameters estimated,
and L is the likelihood function. The model with the smaller
AIC is regarded as superior. Since AIC penalizes models with
too many parameters, it is considered advantageous for
parsimonious model selection and is especially useful when
models are non-nested.

7.5. Bayesian Information Criterion (BIC)

The Bayesian Information Criterion, like AIC, also
considers both model explanatory power and parsimony;
however, BIC has a more substantial penalty for complexity,
particularly in large samples. It is defined as:

BIC = klnn —21In(L)

Where (n) is the sample size. As in AIC, smaller values of
BIC indicate better models. Because its penalty term is more
stringent than that of AIC, BIC tends to favour simpler
models. Both AIC and BIC have wide applications in model
comparisons, and the model that results in the smallest value
of the criterion is usually considered the best.

7.6. Mallows’ Cp

Mallows’ Cp is one of the significant criteria for
regression subset selection, which assesses the trade-off
between bias and variance. Mallows’ Cp is calculated as:

_ SSEp

Cp_ 52 _(n_zp)

Where n is the sample size, 62 is the estimate of the error
variance, and SSE), Is the sum of squared errors for the model
with p predictors. A model with a Cp value close to is
considered desirable. Larger values of Cp suggest overfitting,
whereas minimal values may indicate underfitting.

Thus, Cp offers a model selection diagnostic that strikes
a balance between explanatory adequacy and model
complexity.

8. Model Development for KPIs
8.1. NPR Model by Backward Elimination

The stepwise regression equation for predicting the NPR
was developed using the backward elimination approach
available in the Minitab software environment.

The backward elimination technique involves the
elimination of variables that do not show an appreciable level
of significance, and the process continues until an equation
with a suitable level of simplicity and explanatory power has
been derived. The variables considered for the multiple linear
equation in the present study were UCS, CAL E, and I'Vp.

In the first cycle, the regression model comprised all four
variables. The p-value for E (Young’s Modulus) was 0.158,
exceeding the selection criterion for retaining the variable,
which was set at o = 0.10. E was thus eliminated, and the
model comprised of the remaining three variables: UCS, CAl,
and ['Vp.

Table 5. Metrics of the stepwise backward elimination method for the NPR model

Step 1 Step 2
Coefficient P value Coefficient P value
Constant 52125 51413
UCS -592.5 0 -591.7 0
CAl -87233 0 -82046 0
E 433 0.158
IVp -4,94 0 -4.2 0
Metrics
S 858.085 861.621
R? 96.45% 96.40%
R?(adj) 96.34% 96.31%
Mallows’ Cp 5 5.02
AlCc 2083.7 2083.58
BIC 2100.07 2097.31
o to remove = 0.1
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The regression equation is:

NPR = 51413 — 591.7(UCS) — 82046(CAI) —
4.20 (I)

This formula represents a negative relationship between
NPR and each of these three variables, suggesting that higher
values of UCS, CAI, and I'Vp are associated with lower values
of normalized production rate. From the coefficient table of
the final model, UCS, CAl, and I'Vp are found to be equally
significant predictors because they all share the exact value of
0.000. The absolute values of the t-statistics associated with

UCS (33.44), CAI (25.94), and IVp (27.86) are tremendous,
and thus, there is robust support for the inclusion of predictors.

The Variance Inflation Factor indices of UCS (5.90), CAI
(7.22), and IVp (7.20) are less than 10. Thus, the
multicollinearity between the predictors CAI and IVp. The
model Summary reports an R? of 96.40, which means that the
chosen predictors are collectively explaining approximately
96.40% of the variance in NPR. The Adj R? of 96.31 is very
close to this and further supports the robustness of the model
to the number of variables being used. The Predicted R? is
96.16, which denotes that the regression equation has
maintained its goodness of fit and is free from overfitting.

Table 6. Coefficients table for the backward elimination NPR model

Term Coef SE Coef T-Value P-Value VIF
Constant 51413 822 62.54 0
UCS -591.7 54.8 -10.8 0 5.9
CAl -82046 9798 -8.37 0 7.22
IVp -4.2 1.06 -3.95 0 7.2
Table 7. Model summary for the backward elimination NPR model
S R-sq R-sg(adj) R-sg(pred)
861.621 96.40% 96.31% 96.16%
Table 8. ANOVA metrics for the backward elimination NPR model
Source DF Adj SS Adj MS F-Value P-Value
Regression 3 2.44E+09 8.14E+08 1096.56 0
UCS 1 86561721 86561721 116.6 0
CAI 1 52056833 52056833 70.12 0
IVp 1 11564823 11564823 15.58 0
Error 123 91314083 742391
Total 126 2.53E+09

The results of the ANOVA test establish the overall
significance of the Regression Model. The F-statistic for the
Regression Model is 1096.56, and its significance is given by
its p-value of 0.000. The F-values for UCS, CAI, and [Vp are
116.60, 70.12, and 15.58, respectively, which are significant
at their respective levels. The Standard error of the Estimate
(S = 861.621) is the standard error of the regression.
Information-theoretic values also support the model.

The Corrected Akaike Information Criterion (AICc) of
2083.58 and Bayesian Information Criterion (BIC) 0f2097.31
suggest a good trade-off between model simplicity and fit.
Mallows’ Cp statistic is also at 5.02, almost hitting the target
of pt1=4, implying that this model is unbiased and efficient.
Therefore, the backward elimination method provides a
statistically sound and significant predictive model for NPR
based on UCS, CAI, and IVp. The deletion of E does not
weaken the model since R-squared and Mallows’ Cp remain
stable with each elimination. Hence, the final result provides
a good representation of the rock and material variables’ effect
on the normalized production rate.
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8.2. NPR Model by Forward Selection

On the contrary, in the forward selection method, the
process starts with a null model, and predictors are gradually
added according to their relevance in enhancing model
performance, which might be assessed using significance tests
and information criteria.

In this analysis, UCS was added to the first step due to its
significant value (p = 0.000) and considerable contribution to
reducing the standard deviation to 1349.14. In this first step,
UCS accounted for approximately 91.02% of the variation in
NPR. In the second step, CAI was added, increasing the value
of R? to 95.94% while decreasing the standard error to
910.861.

Adding IVp in the third step further improved the model
fit. The value of R? climbed to 96.40%, while the standard
error decreased to 861.621. Analysis of E in the fourth step
revealed a probability value of 0.158, which exceeds the level
of significance. Therefore, E is not included in the model. The
process is illustrated in a table.
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The forward selection method produced the following
final regression equation:

NPR = 51413 — 591.7(UCS) — 82046(CAI) —
4.20(IVp)

The model constructed using forward selection is
identical to the one constructed using backward elimination.

The coefficients table offers detailed information about the
regression parameters. The constant term is 51413, while the
coefficients for UCS, CAI and I'Vp are all negative: -591.7, -
82046, and -4.20, respectively. Each of the three factors is
significant (p = 0.000) with high t-statistics, establishing the
importance of the factors for explanation. The VIFs are
precisely the same as the values shown in the backward
elimination test, establishing the extent of multicollinearity.

Table 9. Metrics of the stepwise forward selection method for the NPR model

Step 1 Step 2 Step 3 Step 4
Coef P Coef P Coef P Coef P
Constant 47064 53223 51413 52125
UCS -1256.8 0 -682.6 0 -591.7 0 -592.5 0
CAI -104156 0 -82046 0 -87233 0
IVp -4.2 0 -4.94 0
E 433 0.158
Metrics
S 1349.14 910.861 861.621 858.085
R-sq 91.02% 95.94% 96.40% 96.45%
R-sq(adj) 90.95% 95.87% 96.31% 96.34%
Mallows’ Cp 186 18.72 5.02 5
AlCc 2195.22 2096.56 2083.58 2083.7
BIC 2203.56 2107.61 2097.31 2100.07
Achieved minimum AICc = 2083.58
Table 10. Coefficients table for the forward selection NPR model
Term Coef SE Coef T-Value P-Value VIF
Constant 51413 822 62.54 0
UuCSsS -591.7 54.8 -10.8 0 5.9
CAI -82046 9798 -8.37 0 7.22
IVp -4.2 1.06 -3.95 0 7.2
Table 11. Model summary for the forward selection NPR model
S R-sq R-sq(adj) R-sq(pred)
861.621 96.40% 96.31% 96.16%

On comparing the performance metrics of the forward
selection method, it verifies the reliability of the resultant
model. R% adj R? (96.31%), and predicted R? (96.16%) match
exactly as in the backward elimination, which verifies
consistency in the result. The value of the standard error,
861.621, matches precisely as calculated earlier. Information
criteria showed a constant decrement upon the addition of the

significant variables, which attained minimum points (AICc =
2083.58, BIC = 2097.31) at the addition of variables UCS,
CAI and IVp. Mallows’ Cp values for this situation are also
the same at 5.02, revealing no bias within the predictions. The
ANOVA table for the forward model identifies the
significance the model assigns to the retained factors in the
explained variance.

Table 12. ANOVA metrics for the forward selection NPR model

Source DF Adj SS Adj MS F-Value P-Value
Regression 3 2.44E+09 8.14E+08 1096.56 0
UCS 1 86561721 86561721 116.6 0
CAI 1 52056833 52056833 70.12 0
IVp 1 11564823 11564823 15.58 0
Error 123 91314083 742391
Total 126 2.53E+09
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The F-statistic for E, however, is 2.02 with a p-value of
0.158, again suggesting that E is not significant in predicting
NPR in the current model context.

Notwithstanding the absence of statistical significance in
the current model context, Young’s Modulus is physically
relevant because it is a measure that affects the amount of
energy needed for fracture.

8.3. PCM Model by Backward Elimination

The construction of a regression equation for predicting
PCM was carried out using the methods of backward
elimination and forward selection using the Minitab software.
The backward elimination method began with the initial
complete model, which included the predictor variables UCS,
CALE, and IVp.

The first step eliminated the variable UCS on the basis of
its high probability value (0.635), which surpassed the alpha
to remove value set for the test criterion of 0.10.

The process continued by eliminating the variables E
(probability value = 0.283) and IVp (probability value =
0.437) for the same reason, eventually terminating with the
final step, Step 4, where only the significant predictor variable
CAI with a probability value of 0.000, well within the
criterion, was retained as the sole predictor for interpretation,
with the regression equation being:

PCM = —2.554 + 25.949(CAI)

The process has been summarised in a table.

Table 13. Metrics of the stepwise backward elimination method for the PCM model
Step 1 Step 2 Step 3 Step 4
Coef P Coef P Coef P Coef P
Constant -2.524 -2.525 -2.628 -2.554
UCS -0.0049 0.635
CAI 26.76 0 26.39 0 27.14 0 25.949 0
E 0.0627 0.283 0.0624 0.283
IVp -0.00021 0.351 -0.00025 0.231 -0.00014 0.437
Metrics
S 0.163404 0.162889 0.162995 0.162739
R-sq 92.04% 92.02% 91.95% 91.91%
R-sq(adj) 91.78% 91.83% 91.82% 91.85%
Mallows’ Cp 5 3.23 2.38 0.99
AlCc -92.12 -94.09 -95.06 -96.57
BIC -75.75 -80.36 -84.01 -88.24
o to remove = 0.1

The coefficient values not only support the significance
of the intercept variable (—2.554) and CAI coefficient (25.949)
with a value of 0.000, but also support the validity of the VIF
value of 1.00, which rejects the multicollinearity assumption.

The model signified excellent explanatory and predictive
capabilities with an R? value of 91.91%, adjusted R? value of
91.85%, and predicted R? value of 91.66%, which indicates

that CAI has been able to explain a significant variation of the
variability of PCM.

Furthermore, the ANOVA table verified the validity of the
robust model with an F-statistic value of 1420.14 and a
regression p-value of 0.000, which not only indicated that CAI
has a high degree of significance to predict PCM, but also
supported that the model is free from multicollinearity.

Table 14. Coefficients table for the backward elimination PCM model

Term Coef SE Coef T-Value P-Value VIF
Constant -2.554 0.123 -20.78 0
CAI 25.949 0.689 37.68 0 1
Table 1. ANOVA metrics for the backward elimination PCM model
Source DF Adj SS Adj MS F-Value P-Value
Regression 1 37.611 37.6111 1420.14 0
CAI 1 37.611 37.6111 1420.14 0
Error 125 3.311 0.0265
Total 126 40.922
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8.4. PCM Model by Forward Selection

A parallel modelling was performed employing Minitab’s
forward selection technique. In contrast to backwards
elimination, this process starts from a null or empty model and
stepwise adds predictors depending upon their role in
enhancing model fitness.

Assessment of each of the first candidate variables (UCS,
CAL E, and IVp) indicated that CAI had the least p-value
(0.000) and thus was introduced into the model first. After
inclusion in the model, the remaining candidates were tested

in turn; none were found to be macro-statistically significant
(p=0.635 in UCS, p=0.283 in E, p=0.231 in [Vp). Therefore,
no further candidates were added to the model, and a quadratic
optimality criterion function was reached that was equivalent
to that from backward elimination:

PCM = —2.554 + 25.949(CAI)
This equation precisely defines the linear relationship, in

which PCM is estimated using the value of CAI The steps
have been summarised in a table.

Table 16. Metrics of the stepwise forward selection method for the PCM model

Step 1 Step 2 Step 3 Step 4
Coef P Coef P Coef P Coef P
Constant -2.554 -2.628 -2.525 -2.524
CAI 25.949 0 27.14 0 26.39 0 26.76 0
IVp -0.00014 0.437 -0.00025 0.231 -0.00021 0.351
E 0.0624 0.283 0.0627 0.283
UCS -0.0049 0.635
Metrics
S 0.162739 0.162995 0.162889 0.163404
- 0, 0 0
R-sq 91.91% 91.95% 92.02% 92.04%
_ : 0, ") 0,
R-sq(adj) 91.85% 91.82% 91.83% 91.78%
Mallows’ Cp 0.99 2.38 3.23 5
AlCe -96.57 -95.06 -94.09 29212
BIC -88.24 -84.01 -80.36 -75.75
Achieved minimum AICc = -96.57
Table 17. Coefficients table for the forward selection PCM model
Term Coef SE Coef T-Value P-Value VIF
Constant -2.554 0.123 -20.78 0
CAI 25.949 0.689 37.68 0 1
Table 18. Model summary for the forward selection PCM model
S R-sq R-sq(adj) R-sq(pred)
0.162739 91.91% 91.85% 91.66%

The coefficients table once again verifies the strong
statistical significance of the two terms (p = 0.000) along with
the absence of multicollinearity in the model (VIF = 1.00). The
summary table mentions the Standard Error of Regression
(SER) as 0.162739, which informs about the scale of the
deviations.

The value of R?, Adjusted R?, and Predicted R? is the same
as that of the backward elimination model (91.91%, 91.85%,
and 91.66%, respectively), signifying perfect explanatory
fitness and generality. Finally, the Analysis of Variance
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(ANOVA) table confirms the statistical significance of the
created model. The output further strengthens the significance
of the model, with an F-statistic value of 1420.14 (p = 0.000).
The degree of freedom values: 1 for regression and 125 for
error — specify that the test has been performed on a dataset of
127 observations. Furthermore, the forward selection model
has given a minimum Akaike Information Criterion (AIC) of
-96.57. In conclusion, both the backward elimination method
and the forward selection technique yield the same single-
predictor regression equation, in which CAI emerges as the
lone, significant predictor of PCM. The equation possesses
high explanatory power, predictability, and simplicity.
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Table 19. ANOVA Metric for the forward selection PCM model

Source DF Adj SS Adj MS F-Value P-Value
Regression 1 37.611 37.6111 1420.14 0
CAI 1 37.611 37.6111 1420.14 0
Error 125 3.311 0.0265
Total 126 40.922
9. Model Validation of surface miner used at the chosen study sites. Furthermore,

The proposed models were verified using the unseen data
subset, which was obtained from the original dataset. The data
subset for verification was designed to incorporate every type

the data subset for verification was prepared to retain
significant variations for the most material influencing factors,
such as the UCS, IVp, CAI, and power-to-weight ratio of
surface miners.

Table 20. Statistical summary of the validation dataset

Variable Count Mean StDev Minimum Median Maximum I0OR
UCS 16 21.45 4.15 13.61 22.44 29.31 5.25
CAl 16 0.17763 0.02424 0.129 0.179 0.22 0.03575

E 16 2.122 0.735 1.15 2.06 3.6 1.257
IVp 16 946.8 257.4 529 913 1555 323.5
NPR 16 20621 5131 13220 19233 32003 6791
PCM 16 2.053 0.607 0.88 2.065 3.47 0.615

For validation purposes, the values of the predicted
Normalized Production Rate (NPR) and pick Consumption
per 1000 tonnes (PCM) were compared with the actual values
obtained from field measurements. The models are restated
below for ready reference.

NPR = 51413 — 591.7(UCS) — 82046(CAI) —

PCM = —2.554 + 25.949(CAI)

The percentage error of prediction was calculated
between actual and predicted values using the standard
expression:

__ (Predicted Value—Actual Value)

% Error = x 100
4.20(1Vp) Actual Value
Table 21. Actual vs Predicted values of NPR and PCM
Actual NPR Predicted NPR Percentage error Actual PCM Predicted PCM Percentage error

13219.82 9489.153 -28.22 3.47 3.15478 -9.08
17591.61 16051.61 -8.75 2.29 2.557953 11.70
16303.44 16186.31 -0.72 2.65 2.428208 -8.37
17546.29 16784.16 -4.34 2.27 2.402259 5.83
18957.56 18218.56 -3.90 2.07 2.246565 8.53
16788.13 16093.85 -4.14 2.58 2.661749 3.17
16163.78 16590.14 2.64 2.36 2.6358 11.69
18324.61 18260.13 -0.35 2.23 2.428208 8.89
19631.69 20251.58 3.16 2.06 1.935177 -6.06
19507.85 20622.42 5.71 1.81 1.909228 5.48
21355.36 21391.72 0.17 1.99 1.831381 -7.97
24360.3 23706.38 -2.68 1.7 1.519993 -10.59
21993.2 22776.05 3.56 1.83 1.909228 4.33
28553.89 27508 -3.66 1.3 1.260503 -3.04
27636.85 28214.53 2.09 1.36 1.208605 -11.13
32002.55 30554.23 -4.53 0.88 0.793421 -9.84

To better assess the predictability, actual versus predicted
scatter plots were employed. Scatter plots allow the direct
rendering of the observed values on the x-axis, the values
predicted by the model on the y-axis, with the 1:1 line
connecting the values in a perfect correlation manner. The

spatial arrangement of the data in relation to the line can
convey the level of prediction accuracy, the nature of the
systematic error, and the error patterns of the data. If the
spatial arborization of the data aligns closely with the line, the
data has made accurate predictions, while a larger spacing

271



Om Prakash Singh et al. / IJETT, 74(1), 259-274, 2026

from the line implies less precise prediction accuracy.
Examination of the scatter plots reveals that the NPR model
has a pretty good predictive ability across a majority of the
data points, except for one strong outlier where the model
significantly underpredicts the value. For the remaining
points, the absolute percentage errors in the predictions made
by the NPR model are relatively small, with most points
having a percentage error of less than 5%. For the PCM, the
error pattern is relatively evenly spread, although the
percentage errors look relatively larger because the actual
magnitude of the measured quantities is much smaller. For the
PCM, the error spread is roughly between —11% and +12%,
implying stable, although not uniformly accurate, predictive
performance. There are positive as well as negative errors for

35000
30000
25000
20000

15000

Predicted NPR

10000 °
5000

0

0 5000 10000

15000

the NPR and the PCM, implying that the predictive errors
contain instances where the prediction either overestimated or
underestimated the actual quantity. Although the —28.22%
error in the NPR, classed as an outlier, contributes
significantly to the overall error distribution, the remaining
predictive results for the NPR imply that the model is
functioning correctly for most operating conditions. The PCM
predictions, although necessarily more affected by slight
variations in numbers, are generally around a stable error
level, implying stable performance at the various data points.
From the above results, it is verified that the models generated
are giving reliable predictions for both the NPR and PCM, and
the differences in predictions are more accurate at determined
conditions.
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Fig. 3 Actual vs Predicted scatter Plot for NPR
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10. Limitations of the Model

Models developed are based on data gathered in coal
mines where the dirt bands are present in the coal seams. Dirt
bands are known to have a significant influence on cutting and
total machine productivity, and the presence of these bands in
certain coal seams exerts a significant effect on the cutting
process and the overall efficiency and productivity at which
the machines work. Hence, these models may not apply to coal
seams having fewer dirt bands, as the conditions are pretty
different. Additionally, the models do not include operational
aspects such as cutting direction, operation mode, loading
practices, and production planning, among others. These
operational factors exercise considerable impact on the
productivity rates for surface miners, whereas they were
handled indirectly instead of being handled directly in the
current modelling approach.

11. Results and Discussion

The models of regression designed for calculating the
Estimated Normalized Production Rate (NPR) can predict
well and faithfully reproduce the behavior of the values for all
points except one, which acted as an obvious outlier. In the
case of the Pick Consumption per 1000 tonnes (PCM), the
deviations of the predictions are more equally distributed but
within a slightly broader range in percentage because of the
low value of the PCM measurements. Additionally, it is easy
to implement these models because of their linear form.
Moreover, these models can be applied by practitioners in the

field. Hence, the predictive accuracy obtained can be of great
benefit to the production planning department, where it can be
used as an approximation of production time and operational
costs.

However, there is a good deal of potential for
improvement within models through the usage of machine
learning methods, particularly when the datasets include
geotechnical conditions from wider regions. It can efficiently
decode complex non-linear relations, along with the
processing of categorical variables, unlike linear models.

Further, the current models include various key
influencing parameters like Depth of cut, skill level of the
operator, properties of intact and rock mass, machine
characteristics, mine-specific habits of replacing picks,
climatic conditions like rainfall, and operating method as
constraints. They are not considered as predictors. Adding
them to the models will enable improved predictive accuracy.

12. Conclusion

The study provides a complete overview of an experiment
conducted to develop predictive models for the critical
performance indicators of surface miners in coal mines. A total
of 143 data observations were obtained for the locations
shortlisted for this study. Out of these, 127 observations were
used to train the models, and 16 observations were used for
testing purposes.

Table 22. Models developed for the prediction of KPIs of surface miners
S. No KPI Predictive Model R?
1. Normalized Production Rate NPR = 51413 — 591.7(UCS) — 82046(CAI) 0.9617
—4.20(1Vp)
2. Pick Consumption per 1000 tonnes PCM = —2.554 + 25.949(CAI) 0.9166

Finally, the developed models have been validated using
a separate test dataset drawn from the original sample in a
manner that ensured representation of all surface miner types
employed at the selected sites.

However, large data sets of other parameters, including
machine life and human-machine interface from different
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