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Abstract - The present study puts forward the model formulations of Stepwise Multiple Regression Analysis for obtaining the 

value of Normalized Production Rate and Pick consumption per 1000t of surface miners operating in opencast coal mines of 

Mahanadi Coalfields Limited. A total of 143 data entries have been compiled to develop models. The entries contain Uniaxial 

Compressive Strength Index, Cerchar Abrasivity Index, In-situ P-Wave Velocity, and Normalized Production Rate and Pick 

Consumption per 1000t. Two models have been formed independently to determine the Normalized Production Rate and Pick 

Consumption per 1000t. The two models have been developed and generated with the help of Minitab. The models have been 

formed with the forward selection and backward elimination method of stepwise regression techniques. The Student’s T-tests 

have been carried out on models to determine which of the predictors are most significant. The results also reveal that the 

accuracy of models formed using statistical models is high and provide easy accessibility to predisposed engineers of surface 

miners to obtain estimations of Normalized Production Rate and Pick Consumption per 1000t. The models formed with statistical 
techniques provided appropriate results and can be effectively employed in opencast coal mines with similar geotechnical 

conditions. 

Keywords - Cutting Performance, PickConsumption, Opencast Coal Mines, Stepwise Multiple Regression Analysis, Surface 

Miner.

1. Introduction 
To satisfy the growing demand for faster production, the 

opencast coal mines have gradually adopted the use of mass 

production methods, mainly through the incorporation of 

surface miners. A surface miner is also known as a continuous 

surface miner. It combines extraction, crushing, and loading in 

a single process operation [1, 2]. Coal extraction through the 

usage of surface miners has proved more efficient, attracting 

a significant amount of research work for improving their 

efficiency. There has been a substantial amount of work 

carried out related to cutting performance predictions in 

surface miners. A significant part of existing models has been 

generalized predictive models that have been derived based on 

data drawn from different types of rocks [3-7]. Although 
models based upon machine parameters alone have 

underemphasized the importance of rock mass parameters in 

a substantial way, models based upon rock mass parameters 

often neglect a few important machine-related parameters in 

surface miner models. Recent models attempted based upon a 

broad spectrum of machine-related parameters that encompass 

intact rock properties, rock mass properties, machine 

properties, and geo-mining parameters have been generalized 

and are strongly predictive in nature. For instance, models 

based on multiple regressions were developed by Prakash et. 

al. (2024) [8] in evaluating cutting speeds in surface miners in 

coal and limestone settings. Although they are considered 

valuable, such models may also pose limitations when applied 

to specific pairs of geo-mining factors and machine 

parameters. Additionally, the impact caused by the dirt bands 

on the cutting performance of surface miners has received 

little or inadequate attention and research in past research 
efforts. As such, it has become necessary to study further the 

simultaneous influence exerted by intact rock, rock mass, and 

machine parameters on the geo-mining process concerning 

coal seams with intercalated dirt bands.   

2. Literature Review 
Various parameters tend to affect the performance level of 

surface miners. Four major groups of these parameters have 
been identified for classification and understanding purposes. 

They include rock parameters for intact rock and rock masses, 

parameters for machines and equipment, and operational 

parameters. The intact rock parameters that tend to affect the 

cuttability process include several rock properties that tend to 

be either mechanical, physical, or strength-related. On the 

other hand, rock parameters take into consideration the 

structural and geological discontinuities that exist within the 

rock environment. Moreover, parameters that relate to the 
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machines tend to have an intensive influence on performance 

[9]. Understanding these variables is essential for selecting 

appropriate excavation systems and optimizing surface 

mining operations. Consequently, several empirical models 

have been developed in previous studies to predict Key 

Performance Indicators (KPIs) such as productivity, pick 

Consumption, and diesel consumption, using various 

combinations of these influencing parameters [10].  

Table 1. Types of variables influencing the cutting performance of surface miners 

Type Variables 

Intact Rock 

Parameters 

Brazilian tensile strength, Brittleness index, Cerchar abrasivity index, Density, Firmness index, Moisture 

content, Point load strength index, P-wave velocity, Specific energy consumption, Uniaxial 

Compressive Strength (UCS), Young’s modulus 

Rock Mass 

Parameters 

Ash/impurities/silica content, Dirt bands/intrusions, In-situ P-wave velocity, Joints/discontinuities, Rock 

Quality Designation (RQD), Schmidt rebound hardness number, Stickiness, Volumetric joint count. 

Machine 

Parameters 

Breakout angle, Cutter power, Drum diameter, Drum width, Ratio of Energy transfer to the cutting 

drum, Engine power, Machine weight, Number of picks, Pick lacing pattern, Pick material, Pick 

orientation 

Operational 

Parameters 

Available face length, Available face width, continuous mining method) Cutting speed, Depth of cut, 
Direct loading, empty travel back method, Mining technique (e.g., Operator efficiency, Side-casting, 

turn back method, Wet or dry cutting, Windrowing 

 
(a)  (b) 

Fig. 1 Cutting performance of surface miner: (a) 2200 SM 3.8, and (b) 2200SM. 

As seen in Figures 1(a) and 1(b), the manufacturers of 

surface miners only used one rock parameter-the undefined 

compressive strength-to characterise the cutting performance. 

In this case, cutting performance (m3/hr) is determined by the 

volume of material cut relative to cutting time, or effective 

hours of cutting. Manoeuvring and servicing time are not 

accounted for. Rock’s UCS is thought to be the most accurate 

measure of cuttability, and as compressive strength rises, 

cutting rate falls [11]. The cutting performance of surface 

miners, as illustrated in Figures 1(a) and 1(b), demonstrates a 

strong inverse relationship with the Unconfined Compressive 

Strength (UCS) of the rock. Figure 1(a) presents the cutting 

performance of a surface miner in laminar or brittle soft rock 

(e.g., coal), comparing two operational configurations-

standard and optimized for soft rock. The optimized 

configuration achieves significantly higher productivity, 

particularly at lower UCS values (up to ~1800 m³/h at UCS ≈ 

0 MPa), with performance gradually decreasing as UCS 
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increases to 35 MPa. In contrast, the standard setup yields 

lower performance throughout, with the productivity gap 

narrowing as UCS increases. Whereas Figure 1(b) displays the 

cutting performance of the Wirtgen 2200 SM surface miner 

under different operating conditions, including windrowing 
and conveyor loading in various rock mass structures (loose, 

fine-jointed, coarse-jointed, and massive) [9]. The highest 

cutting performance (~750 m³/h) is achieved during 

windrowing in loose rock at low UCS values. 

In contrast, performance declines markedly in more 

competent and massive rocks under conveyor loading, 

reaching below 100 m³/h for UCS values near 100 MPa. The 

performance hierarchy clearly shows that rock mass structure 

and the method of material handling substantially influence 

cutting efficiency [4].  

Figures 1(a) and 1(b) collectively emphasize that surface 

miner cutting performance decreases with increasing UCS 
[12]. Optimized machine configurations (Figure 1(a)) and 

favourable operating conditions, such as windrowing in loose 

rock (Figure 1(b)), significantly enhance productivity. 

Machine efficiency is highest in low-strength, well-

fragmented rock masses and lowest in high-strength, massive 

formations, underlining the importance of selecting suitable 

equipment and operational strategies based on geotechnical 

site conditions [13]. 

Abrasiveness is a key characteristic of rock or coal that 

affects cutting pick wear and pick maintenance costs, and 

consequently affects output rate. Because coal quality varies, 
the abrasivity differs from site to site. According to reports, 

the average pick life at SECL mines ranged from 275 to 681 

hours, and the rate of abrasion of cutting picks is strongly 

impacted by the coal quality (silica content) [22].  

The Cerchar abrasivity test can be used to evaluate the 

abrasivity of rock. Pick wear is an ongoing process, and in 

order to precisely measure it, the weight loss of all the picks 

in relation to the amount of material cut must be correlated. 

This is not a practical method because it requires stopping the 

machine for a considerable amount of time. Picks are changed 

only after the tungsten carbide insert is totally worn out, and it 

is determined that it is no longer able to cut the material. If no 
pick is replaced on a given day, it indicates that none of the 

picks have deteriorated to the point where they need to be 

replaced, not that there is no pick wear. Therefore, picks that 

are changed every day in terms of material cut will vary 

greatly and cannot be utilised to indicate pick Consumption or 

wear rate. According to a report, the coefficient of correlation 

between pick consumption and the daily and monthly 

production of coal was 0.6643 and 0.9092, respectively [15]. 

In order to account for changes and provide a more accurate 

picture of pick consumption, the authors of this research 

averaged pick replacements over a period of one month or 

more. 

 Origiliasso C et al. (2014) have created an empirical 

relation for calculating the production rate of surface miners 

by taking into consideration UCS, Cerchar’s Abrasivity Index 

(CAI), and engine power (Pw) in kW as the main 

characteristics influencing productivity. This relationship is 
founded on data from equipment makers and experimental 

data. In addition to cutting time, the output rate accounts for 

time spent on ancillary tasks like manoeuvring and servicing. 

Usually, the materials having a CAI value of 0.5 are 

considered easy to dig and non-abrasive [3]. Furthermore, the 

production rate will be influenced by the machine’s power. 

Rocks with a higher UCS can be cut by a machine that is 

heavier and more powerful. This equation’s primary flaw, 

though, is that it totally ignores the properties of the rock mass. 

Dey and Ghose (2008) created a cuttability index for the first 

time. It is a composite of the following factors: machine 

power, rock abrasivity, volumetric joint count, direction of 
cutting relative to the major joint orientation, and point load 

strength index. This index provides an initial assessment of the 

surface miner’s applicability. If the value of the cuttability 

index is found to be greater than 80, then the deployment of 

surface miners is not recommended. Based on the cuttability 

index, a model was developed to predict the production of 

surface mining in m3/hr using the rated capacity of the 

machine in m3/hr as another variable. The relationship 

considers machine and operating factors, intact rock, and rock 

mass. However, there is ample room for investigation because 

the value of the proportionality constant falls between 0.5 and 
1. All the above researchers have developed relationships for 

estimating the productivity of surface miners only.  

On the other hand, in their outstanding research, Prakash 

et al. (2015) created the Rock Cuttability Index for Surface 

Miners which is used to estimate Key Performance Indicators 

(KPIs) of surface miners viz., TPH (production in tonnes per 

hour), DCT (diesel consumption/1000 t) and PCT (pick 

consumption/1000 t) [16]. The models are summarized in the 

table below. 

Table 2. Models developed by different researchers 

Author Year Model 

Jones and 

Kramadibrata 
1995 

P𝑅  
=  1005 −  559 Log (UCS) 

Origiliasso et 

al. 
2014 

P𝑅  
=  (2 × EP −  600)

× e−0.024 {10×(CAI−0.5)+𝑈𝐶𝑆} 

Dey and Ghose 2008 L* =  (1 −  
CI

100
) K ×  Mc 

Prakash et. al. 2015 

TPH = 181.5 I𝑆𝑀
0.245

 

DCT = 338 × I𝑆𝑀
−0.19 

PCT = 2 × I𝑆𝑀
−0.18 

Acronyms - PR = production rate of surface miner; UCS = 

uniaxial compressive strength; EP = engine power; CAI = 
Cerchar’s Abrasivity Index; L* = production of surface 

miner; CI = cuttability index which is a composite of the 
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following factors: Machine Power (M), Rock Abrasivity 

(Aw), Direction Of Cutting With Regard To Major Joint 

Orientation (Js), Volumetric Joint Count (Jv),  and point 

load strength Index (Is) calculated using the equation CI =
 Is +  Jv +  Aw +  Js +  M; Mc = rated capacity of the 
machine; k = proportionality constant whose value ranges 

from 0.5 to 1; TPH = production in tonnes per hour; DCT 

= diesel consumed/1000 t; PCT = pick consumed/1000 t; 

ISM = Rock Cuttability Index for Surface Miners calculated 

using equation I𝑆𝑀  =  
1000 MF

IRF x RMF
 where, MF = Machine 

factor calculated using MF =
EP x CA x CS

1000
; IRF is Intact Rock 

Factor calculated using IRF =  E x CAI x LVp ; RMF = 

Rock Mass Factor calculated using RMF =
IVp

RN
 ; CA = 

contact area of the cutting drum calculated as CA =

 
2πR cos−1[(R−D) R⁄ ]

360
DW; CS is the speed of cutting (m/min); 

E = Young’s modulus (GPa); LVp = laboratory p-wave 

velocity (km/s); IVp = in-situ p-wave velocity (m/s); RN = 
rebound harness number 

 

Cutting speed and Depth of cut are two input factors that 

depend on rock strength in these relationships. Additionally, 

the developed relationships encompass ten distinct factors, 

making KPIs time-consuming and intricate. The machine’s 

operational weight is a crucial factor that will affect the 

surface miner’s KPIs.  Because the cutting drum is towards 

the bottom, the machine’s weight makes cutting easier and 

enhances pick penetration [17]. Furthermore, to achieve 

enough reaction force and vibration-free cutting motion, the 

engine power-to-operating weight ratio must be proportionate. 

The fuel efficiency of the machine improves as the ratio 
increases. This becomes noticeable while cutting through the 

hard or dirt bands that are interwoven throughout the coal 

seam. When cutting dirt bands, there is a potential that the 

machine will vibrate if its weight is lower. 

Contemporary developments in rock excavation 

mechanics and energetics involve improving the 

understanding of the basic process controls that define rock 

excavation efficiency, force requirement, or cutter wear 

mechanisms. Using fracture mechanics theories, Wang & Su 

(2019b) studied the cutting process using a conical pick in 

rocks, showing that rock fracture toughness, elastic modulus, 
or Depth of cut are primary controls in specific energy 

consumption or force coefficient, whereby specific energy 

consumption increases remarkably with rock elastic modulus 

while only a small fraction of the mechanical work input 

contributes to the generation of new fracture surfaces during 

rock breakage [18]. On the other hand, applying full-scale 

tests to jet-assisted rotary drilling, J. Yang et al. (2019) studied 

full-scale tests to investigate rock responses to different rock-

drilling conditions using jet-assisted rock drilling technology, 

providing a comparative energy analysis functional in 

designing optimized drilling mechanisms [19]. 

Thermal phenomena at the tool-rock contact have also 

been of concern. Kumar et al. (2020) carried out an analysis 

involving experiments and modeling with conical pick cutting 

to understand related thermal phenomena and utilize the 

design of experiments for parameter optimization. In this 
analysis, results indicated optimized solutions for parameter 

sets that can minimize tool tip temperature and prevent wear 

factors that would otherwise affect operational reliability [20]. 

On a more general scale, Zhang and Ouchterlony (2022) have 

carried out a study combining research findings for rock 

breakage specific energy and established related perspectives 

for specific energy in surface miners that relate to minimum 

specific energy models applied for studies related to analysis 

and optimization [21]. 

More recent works include the use of data-intensive 

models for cutting force prediction and tool performance 

analysis. Morshedlou et al. (2024) introduced an ensemble 
learning and regression model for cutting force estimation in 

conical cutters based on rock mechanical properties and cutter 

and rock contact area. Their best ensemble models using 

Explainable AI (XAI) delivered the best results for cutting 

force estimation and have potential applications for tool 

selection and cutting force estimation [22]. Zhao et al. (2024) 

further extended these studies by combining experimental 

results and numerical analysis to assess the dynamic reliability 

and wear behavior of picks mounted on cutting drums 

operating under harsh working conditions. They identified the 

typical wear behavior of picks and stress concentrations for 

designing cutting drums and assessing pick wear life [23].  

Considered collectively, these works represent a 

progression from fundamental fracture mechanics analysis to 

system-level testing and analysis through to modern machine 

learning models for prediction. This work establishes a strong 

scientific foundation for advancing cutting efficiency, 

minimizing tool wear, and providing optimal mechanical 

excavation system designs and usage practices. 

3. Research Gap 
Although there is an existing literature scope on surface 

miner performance, the research covering these aspects has 

remained deeply oriented to the parameters of intact rock, rock 

masses, machine setup, and operating conditions. This paved 

the way for the creation of performance indicators, namely the 

Cuttability Index (CI) and Rock Cuttability Index for Surface 

Miners (RCISM), and Empirical Relations Involving Uniaxial 

Compressive Strength (UCS), Rock Abrasity, and Engine 

Power. Nonetheless, most of this research has remained 
concerned with relatively homogenous rock, namely coal and 

limestone, having relatively low variations within the seams. 

Conversely, most of the Indian opencast mines, where coals 

are excavated, tend to display pronounced stratigraphic 

heterogeneity, where dirt bands, shales, and variations of ash 

content manifest with prompt changes in surface miner 

cuttability, cutting force, picks, and machine utilization. Such 
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heterogeneities are currently underrepresented in current 

modeling approaches despite the fact that parameters such as 

the level of silica content, ash percentage, joint density, and 

moisture content are proven to significantly impact pick life, 

cutting energy demand, and cutting rates. This aforementioned 
fact makes the above-mentioned performance dynamics of 

surface miners, when operating in coal mines where the seam 

appears together with bands of intercalated dirt layers, 

inadequately forecasted, thereby emphasizing an existing gap 

in the used methods. This thereby forms the justification that 

an immense possibility exists within the design of an easy-to-

use predictive version able to forecast significant performance 

indicators of surface miners concerning normalized cutting 

rates and pick wear consumption. 

4. Site Description and Methodology 
In an effort to achieve a better insight into the variables 

that determine the performance of Surface Miners, especially 

while coal cutting in the presence of intercalated dirt bands, an 

in-depth survey has been done in the ten opencast coal mines 

of Mahanadi Coalfields Limited (MCL) in the state of Odisha, 

wherein the coal mines have high ash content and the regular 

occurrence of interlaced dirt bands of varying thickness from 

10 cm to 150 cm. The research emphasized the development 
of predictive models on the basis of Key Performance Indices 

(KPIs) of surface miners, viz., production rate and pick 

consumption. The diesel consumption component of the KPI 

has not been taken into account, being influenced by various 

non-geological and non-operational parameters alongside 

machine age, maintenance level of engines, and operator 

expertise, apart from the tonnage cut. As a measure to ensure 

equal comparison of production rates with varying makes and 

models of surface miners, the chosen parameter replaced the 

absolute value of the production rate called the Normalized 

Production Rate (NPR) with a definition that stated the 

tonnage of material removed per unit area of the drum per hour 
and expressed in t/h/m². The Pick Consumption Per 1000 

tonnes of material removed (PCM) parameter has been 

considered, along with generally accepted norms of earlier 

research works [24]. The prime aim of the predictive models 

has been to reasonably predict the removal rates within geo-

mining conditions, with a special focus on coal seams with 

intercalated dirt bands.  

5. Data Collection 
To achieve this objective, a dataset comprising 143 

observations has been compiled from the designated study 

locations. Out of the total number of observations, 127 were 

used to train the model, while 16 others were set aside to test 

the model. The observations were gathered through machine 

usage hours, material excavated quantities and types, and 

picks consumed. Machine usage hours did not factor in 

standby and maintenance time. The material quantities 

variable considered the total coal and dirt bands excavated by 
the surface miners. The pick consumption data were obtained 

through daily inspections, whereby the picks were inspected 

at the start of the working day, and the worn-out picks were 

replaced with new ones.  

The movement of the surface miners was traced through 

the high-accuracy navigation system. A non-destructive 

technique was used to measure the in-situ sonic velocity of the 

coal seam. The technique is called In-situ seismic refraction 

tomography, and the procedure followed was according to the 

guidelines set by the ASTM E494-20 standard. Moreover, the 

NX-size cores, 3 m long, were extracted through the core 
drilling equipment for a better insight into the characteristics 

of the coal seam and the dirt band. The standards used for 

laboratory analysis are presented in Table 3. The sample 

preparation for performing the tests was conducted according 

to IS:9179-1979. 

Table 3. Standards adopted for the laboratory determination of intact 

rock properties  

Properties Standard adopted 

Bulk density IS:13030-1991 

CAI ASTM D7625-10 

E IS:9221-1979 

UCS IS:9143-1979 

A statistical summary of the input and output variables 

used for development of the model (excluding the data kept 

for validation) is presented in the table. 

Table 4. Statistical summary of the variables for model development 

Type Variable Count Minimum Maximum Mean StDev Median 

Input UCS 127 13.5 25.01 21.429 3.404 22.45 

Input CAI 127 0.125 0.216 0.17727 0.02105 0.18 

Input E 127 1.11 3.781 2.1751 0.6291 2.23 

Input IVp 127 511 1369 966.1 193.6 1011 

Output NPR 127 14720 32352 20132 4484 18646 

Output PCM 127 0.67 3.42 2.0461 0.5699 2.1 

The dataset has four input variables: Uniaxial 

Compressive Strength (UCS), Cerchar Abrasivity Index 

(CAI), Young’s Modulus (E), and P-wave Velocity (IVp), and 

two output variables: the Normalized Production Rate (NPR) 

and the Pick Consumption per 1000 tonnes (PCM). The 

minimum and maximum values of the UCS are observed to be 
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13.5 and 25.01 MPa, respectively, with the average and 

standard deviation at 21.429 MPa and 3.404 MPa, 

respectively, thereby implying moderate variation. The CAI 

ranges between 0.125 and 0.216, with the average and 

standard deviation at 0.17727 and 0.02105, respectively, 
thereby implying low variation in the abrasivity aspects. 

Young’s modulus varies between 1.11 GPa and 3.781 GPa, 

with the average and standard deviation at 2.1751 GPa and 

0.6291 GPa, respectively, thereby implying moderate 

variation. The P-wave Velocity contains the highest level of 

variation among the variations presented, ranging between 

511 m/s and 1369 m/s, with the average and standard deviation 

at 966.1 m/s and 193.6 m/s, respectively. For the output 

parameters, the range for NPR is between 14.720 and 32.352  

thousand tons/day, with an average of 20.132 thousand 
tons/day and a standard deviation of 4.484 thousand tons/day, 

which is highly variable in the production process. The range 

for PCM is between 0.67 and 3.42, with an average of 2.0461 

and a standard deviation of 0.5699, indicating moderate 

variability. 

 
Fig. 2 Box-plot showing distribution of the standardised values of input and output variables 

It can be observed that this dataset ensures a good 

variability in input and output variables that can be used in the 

development of predictive models that are meaningful from a 

statistical perspective. Variability in the data provides a 

reasonable basis for determining relationships between 
variables related to rock mass properties and surface miner 

performance indicators. 

6. Stepwise Multiple Regression Analysis 
Stepwise Multiple Regression Analysis was performed 

using the Minitab software. Multiple Linear Regression 

(MLR) is an analytical method used for modeling the 
relationship between the dependent variable and a set of 

independent variables. This represents the mathematical 

relationship of the variables, which are commonly employed 

for predicting the response and understanding the relative 

impact of measures of the variables within the environment.  

MLR assumes a linear relationship exists between the 

dependent and independent variables. Even in situations 

where the proper functions are less linear, linear 

approximations can still be applicable for modelling. Indeed, 

in relation to other evolved methods, for instance, Artificial 

Neural Network (ANN) models, Adaptive Neuro-Fuzzy 

Inference System, or Tree-Based models, Multiple Linear 

Regression appears to be less complex in terms of 

computations while still being efficient. The general equation 
of the proper function in the form of the regression function 

appears in the following equation. 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑛
𝑖=1 + 𝜀  

Where Y denotes the estimated response or dependent 

variable, β0 refers to the intercept of the regression line; βi 

represents the slope parameters or coefficients associated with 

the predictors; xi denotes the independent variables; and ε 

signifies the random error component that captures the portion 

of variability unexplained by the actual regression function 

and cannot be entirely removed or minimized. 

The presence of a large number of potential predictors in 

a single model may lead to problems such as overfitting, 

multicollinearity, and reduced interpretability. It is therefore 

essential to identify the optimal subset of predictors to ensure 
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model strength. The stepwise multiple linear regression 

procedure is one common technique for accomplishing 

variable selection. 

Stepwise regression is a semi-automated process whereby 

the addition or deletion of variables is done based on 
predetermined criteria set by the researcher using appropriate 

mathematical or computational models and processes. The 

process aims to strike a balance between achieving simplicity 

within the model and maximizing predictability, with the 

understanding that not all variables may influence the outcome 

equally or independently. These criteria include, but are not 

limited to, the p-value and the adjusted R2, Akaike Information 

Criterion (AIC), and Bayesian Information Criterion (BIC), 

discussed later on. Out of the various methods used for 

stepwise regression, the two most commonly employed 

methods are forward selection and backward elimination. 

The forward selection method involves beginning the 
process by considering a model that includes the constant term 

alone. The next step involves selecting the predictor that 

results in the most significant improvement in the model at 

each stage and adding it to the existing model. The process 

continues this way until no additional variable enters the 

model that meets the specified criterion for entry. The forward 

selection method is practical when many variables are 

available for selection, though few of them are expected to 

enter the equation as significant variables. Additionally, this 

method does not introduce multicollinearity at the initial 

stages of the process. 

In contrast, backward elimination uses a reverse 

approach. It begins with a complete model including all 

candidate predictor variables. At each step, the variable having 

the highest p-value-that is, the variable which shows least 

statistical significance-is eliminated from the model. The 

model is then re-estimated and the process repeated in order 

to ensure that the remaining variables have p-values below 

some pre-specified value. This method has many advantages 

when the initial set of predictors is somewhat limited in 

number, and many of these predictors are presumed to be 

statistically insignificant. Nonetheless, the backward 

elimination process may be computationally demanding when 
the number of predictors is significant, and its performance 

may be adversely affected by the inherent multicollinearity of 

the whole model. 

Although it is powerful for model simplification and 

increasing interpretability, they do suffer from some 

limitations, i.e., neither of the methods guarantees 

identification of the globally optimal model, as both exclude a 

comprehensive evaluation of all possible combinations of 

predictors. Furthermore, stepwise methods are susceptible to 

the sequence effects of variable entry or removal, such that 

slightly different data and/or criteria may yield divergent 
results. Neither method considers variable interactions if they 

are not explicitly included. Sometimes, stepwise regression 

could be considered better suited for a given scenario than 

machine learning models. By using stepwise regression, 

parameter estimates are readily determinable, and statistical 

inference is possible in a simple and comprehensible manner. 
This is specifically important in a particular scenario where 

explaining variable effects is of prime importance rather than 

predicting them. Additionally, in stepwise regression, smaller 

amounts of data are sufficient for the proper functioning of 

regression analysis, and the process is less computer-intensive 

compared to most machine learning models, which require 

larger amounts of data and quite often extensive parameter 

tuning to counteract overfitting. 

7. Evaluation Criteria for the Developed Models 
Evaluation of multiple linear regression models involves 

statistical soundness and predictive performance. For the 

purpose at hand, several quantitative criteria have been 

developed for investigating model adequacy, parsimony, and 

reliability in making predictions for unseen data. The 

commonly used measures are p-values, the coefficient of 

determination R2, adjusted R2, AIC, BIC, and Cp of Mallows. 

Each metric performs a different evaluative function to 

contribute to informed variable selection and model 

comparison. 

7.1. p-Value 

The p-value is an assessment of the significance of 

individual predictors in the regression model, assuming that a 

specific regression coefficient equals zero. The dependent 

variable remains unaffected. A lower p-value, typically below 

0.05, suggests that the associated predictor contributes 

significantly to the model. In stepwise regression analysis, p-

values provide a basis for the addition of a variable or for 

shrinkage. However, relying exclusively on the p-value is not 

always appropriate, especially when there are problems with 

multicollinearity and small sample size. 

7.2. Coefficient of Determination (R²) 

The coefficient of determination, denoted as R², indicates 

the percentage of the dependent variable’s variance that can 

be accounted for by the independent variables. Its range is 

from 0 to 1. It reflects the better performance of a model when 

it is high.  

For instance, 0.75 of the R² would suggest that the 
predictors account for 75% of the variability in the response 

variable. Although intuitively appealing, R² has one natural 

Achilles heel: its value never decreases with the addition of 

more predictors, even those that bear no explanatory 

relevance. 

7.3. Adjusted R² 

Adjusted R² overcomes the limitation of R² by penalizing 

the addition of non-informative predictors. It adjusts the 
coefficient of determination based on the number of predictors 
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and the sample size, hence guarding against overfitting. In 

contrast to R², adjusted R² may go down when an added 

variable does not increase the performance of the model, and 

it is, therefore, more reliable in comparing models with 

different numbers of explanatory variables. 

7.4. Akaike Information Criterion (AIC) 

The Akaike Information Criterion is one of the most 

commonly used information-theoretic measures for 

comparing models.  

By evaluating the goodness-of-fit against the model 

complexity, it provides a relative quality of the model and is 

defined as: 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿)  

Where k represents the number of parameters estimated, 

and L is the likelihood function. The model with the smaller 

AIC is regarded as superior. Since AIC penalizes models with 
too many parameters, it is considered advantageous for 

parsimonious model selection and is especially useful when 

models are non-nested. 

7.5. Bayesian Information Criterion (BIC) 

The Bayesian Information Criterion, like AIC, also 

considers both model explanatory power and parsimony; 

however, BIC has a more substantial penalty for complexity, 

particularly in large samples. It is defined as: 

𝐵𝐼𝐶 = 𝑘 ln 𝑛 − 2 ln(𝐿)  

Where (n) is the sample size. As in AIC, smaller values of 

BIC indicate better models. Because its penalty term is more 
stringent than that of AIC, BIC tends to favour simpler 

models. Both AIC and BIC have wide applications in model 

comparisons, and the model that results in the smallest value 

of the criterion is usually considered the best. 

7.6. Mallows’ Cp 

Mallows’ Cp is one of the significant criteria for 

regression subset selection, which assesses the trade-off 

between bias and variance. Mallows’ Cp is calculated as: 

𝐶𝑝 =
𝑆𝑆𝐸𝑝

𝜎̂2 − (𝑛 − 2𝑝)  

Where n is the sample size, 𝜎̂2 is the estimate of the error 

variance, and 𝑆𝑆𝐸𝑝 Is the sum of squared errors for the model 

with p predictors. A model with a Cp value close to is 

considered desirable. Larger values of Cp suggest overfitting, 

whereas minimal values may indicate underfitting.  

Thus, Cp offers a model selection diagnostic that strikes 

a balance between explanatory adequacy and model 

complexity. 

8. Model Development for KPIs 
8.1. NPR Model by Backward Elimination 

The stepwise regression equation for predicting the NPR 

was developed using the backward elimination approach 

available in the Minitab software environment.  

The backward elimination technique involves the 

elimination of variables that do not show an appreciable level 

of significance, and the process continues until an equation 

with a suitable level of simplicity and explanatory power has 

been derived. The variables considered for the multiple linear 

equation in the present study were UCS, CAI, E, and IVp. 

In the first cycle, the regression model comprised all four 
variables. The p-value for E (Young’s Modulus) was 0.158, 

exceeding the selection criterion for retaining the variable, 

which was set at α = 0.10. E was thus eliminated, and the 

model comprised of the remaining three variables: UCS, CAI, 

and IVp. 

Table 5. Metrics of the stepwise backward elimination method for the NPR model 
 Step 1 Step 2 
 Coefficient P value Coefficient P value 

Constant 52125  51413  

UCS -592.5 0 -591.7 0 

CAI -87233 0 -82046 0 

E 433 0.158   

IVp -4.94 0 -4.2 0 

Metrics 

S 858.085 861.621 

R2 96.45% 96.40% 

R2(adj) 96.34% 96.31% 

Mallows’ Cp 5 5.02 

AICc 2083.7 2083.58 

BIC 2100.07 2097.31 

α to remove = 0.1 
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The regression equation is: 

𝑁𝑃𝑅 = 51413 − 591.7(𝑈𝐶𝑆) − 82046(𝐶𝐴𝐼) −
4.20 (𝐼𝑉𝑝)  

This formula represents a negative relationship between 

NPR and each of these three variables, suggesting that higher 

values of UCS, CAI, and IVp are associated with lower values 

of normalized production rate. From the coefficient table of 

the final model, UCS, CAI, and IVp are found to be equally 

significant predictors because they all share the exact value of 

0.000. The absolute values of the t-statistics associated with 

UCS (33.44), CAI (25.94), and IVp (27.86) are tremendous, 

and thus, there is robust support for the inclusion of predictors.  

The Variance Inflation Factor indices of UCS (5.90), CAI 

(7.22), and IVp (7.20) are less than 10. Thus, the 

multicollinearity between the predictors CAI and IVp. The 
model Summary reports an R² of 96.40, which means that the 

chosen predictors are collectively explaining approximately 

96.40% of the variance in NPR. The Adj R² of 96.31 is very 

close to this and further supports the robustness of the model 

to the number of variables being used. The Predicted R² is 

96.16, which denotes that the regression equation has 

maintained its goodness of fit and is free from overfitting. 

Table 6. Coefficients table for the backward elimination NPR model 

Term Coef SE Coef T-Value P-Value VIF 

Constant 51413 822 62.54 0  

UCS -591.7 54.8 -10.8 0 5.9 

CAI -82046 9798 -8.37 0 7.22 

IVp -4.2 1.06 -3.95 0 7.2 

Table 7. Model summary for the backward elimination NPR model 

S R-sq R-sq(adj) R-sq(pred) 

861.621 96.40% 96.31% 96.16% 

 
Table 8. ANOVA metrics for the backward elimination NPR model 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 2.44E+09 8.14E+08 1096.56 0 

UCS 1 86561721 86561721 116.6 0 

CAI 1 52056833 52056833 70.12 0 

IVp 1 11564823 11564823 15.58 0 

Error 123 91314083 742391   

Total 126 2.53E+09    

The results of the ANOVA test establish the overall 

significance of the Regression Model. The F-statistic for the 

Regression Model is 1096.56, and its significance is given by 

its p-value of 0.000. The F-values for UCS, CAI, and IVp are 
116.60, 70.12, and 15.58, respectively, which are significant 

at their respective levels. The Standard error of the Estimate 

(S = 861.621) is the standard error of the regression.  

Information-theoretic values also support the model.  

The Corrected Akaike Information Criterion (AICc) of 

2083.58 and Bayesian Information Criterion (BIC) of 2097.31 

suggest a good trade-off between model simplicity and fit. 

Mallows’ Cp statistic is also at 5.02, almost hitting the target 

of p+1=4, implying that this model is unbiased and efficient. 

Therefore, the backward elimination method provides a 

statistically sound and significant predictive model for NPR 
based on UCS, CAI, and IVp. The deletion of E does not 

weaken the model since R-squared and Mallows’ Cp remain 

stable with each elimination. Hence, the final result provides 

a good representation of the rock and material variables’ effect 

on the normalized production rate. 

8.2. NPR Model by Forward Selection 

On the contrary, in the forward selection method, the 

process starts with a null model, and predictors are gradually 

added according to their relevance in enhancing model 
performance, which might be assessed using significance tests 

and information criteria.  

In this analysis, UCS was added to the first step due to its 

significant value (p = 0.000) and considerable contribution to 

reducing the standard deviation to 1349.14. In this first step, 

UCS accounted for approximately 91.02% of the variation in 

NPR. In the second step, CAI was added, increasing the value 

of R² to 95.94% while decreasing the standard error to 

910.861.  

Adding IVp in the third step further improved the model 

fit. The value of R² climbed to 96.40%, while the standard 
error decreased to 861.621. Analysis of E in the fourth step 

revealed a probability value of 0.158, which exceeds the level 

of significance. Therefore, E is not included in the model. The 

process is illustrated in a table. 
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The forward selection method produced the following 

final regression equation: 

𝑁𝑃𝑅 = 51413 − 591.7(𝑈𝐶𝑆) − 82046(𝐶𝐴𝐼) −
4.20(𝐼𝑉𝑝)  

The model constructed using forward selection is 

identical to the one constructed using backward elimination. 

The coefficients table offers detailed information about the 

regression parameters. The constant term is 51413, while the 

coefficients for UCS, CAI, and IVp are all negative: -591.7, -

82046, and -4.20, respectively. Each of the three factors is 

significant (p = 0.000) with high t-statistics, establishing the 
importance of the factors for explanation. The VIFs are 

precisely the same as the values shown in the backward 

elimination test, establishing the extent of multicollinearity.

Table 9. Metrics of the stepwise forward selection method for the NPR model 
 Step 1 Step 2 Step 3 Step 4 
 Coef P Coef P Coef P Coef P 

Constant 47064  53223  51413  52125  

UCS -1256.8 0 -682.6 0 -591.7 0 -592.5 0 

CAI   -104156 0 -82046 0 -87233 0 

IVp     -4.2 0 -4.94 0 

E       433 0.158 

Metrics 

S 1349.14 910.861 861.621 858.085 

R-sq 91.02% 95.94% 96.40% 96.45% 

R-sq(adj) 90.95% 95.87% 96.31% 96.34% 

Mallows’ Cp 186 18.72 5.02 5 

AICc 2195.22 2096.56 2083.58 2083.7 

BIC 2203.56 2107.61 2097.31 2100.07 

Achieved minimum AICc = 2083.58 

Table 10. Coefficients table for the forward selection NPR model 

Term Coef SE Coef T-Value P-Value VIF 

Constant 51413 822 62.54 0  

UCS -591.7 54.8 -10.8 0 5.9 

CAI -82046 9798 -8.37 0 7.22 

IVp -4.2 1.06 -3.95 0 7.2 

Table 11. Model summary for the forward selection NPR model 

S R-sq R-sq(adj) R-sq(pred) 

861.621 96.40% 96.31% 96.16% 

On comparing the performance metrics of the forward 

selection method, it verifies the reliability of the resultant 

model. R², adj R² (96.31%), and predicted R² (96.16%) match 

exactly as in the backward elimination, which verifies 

consistency in the result. The value of the standard error, 

861.621, matches precisely as calculated earlier. Information 

criteria showed a constant decrement upon the addition of the 

significant variables, which attained minimum points (AICc = 

2083.58, BIC = 2097.31) at the addition of variables UCS, 

CAI, and IVp. Mallows’ Cp values for this situation are also 

the same at 5.02, revealing no bias within the predictions. The 

ANOVA table for the forward model identifies the 

significance the model assigns to the retained factors in the 

explained variance.  

Table 12. ANOVA metrics for the forward selection NPR model 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 2.44E+09 8.14E+08 1096.56 0 

UCS 1 86561721 86561721 116.6 0 

CAI 1 52056833 52056833 70.12 0 

IVp 1 11564823 11564823 15.58 0 

Error 123 91314083 742391   

Total 126 2.53E+09    



Om Prakash Singh et al. / IJETT, 74(1), 259-274, 2026 

 

269 

The F-statistic for E, however, is 2.02 with a p-value of 

0.158, again suggesting that E is not significant in predicting 

NPR in the current model context.  

Notwithstanding the absence of statistical significance in 

the current model context, Young’s Modulus is physically 
relevant because it is a measure that affects the amount of 

energy needed for fracture. 

8.3. PCM Model by Backward Elimination 

The construction of a regression equation for predicting 

PCM was carried out using the methods of backward 

elimination and forward selection using the Minitab software. 

The backward elimination method began with the initial 

complete model, which included the predictor variables UCS, 

CAI, E, and IVp.  

The first step eliminated the variable UCS on the basis of 

its high probability value (0.635), which surpassed the alpha 

to remove value set for the test criterion of 0.10.  

The process continued by eliminating the variables E 

(probability value = 0.283) and IVp (probability value = 
0.437) for the same reason, eventually terminating with the 

final step, Step 4, where only the significant predictor variable 

CAI with a probability value of 0.000, well within the 

criterion, was retained as the sole predictor for interpretation, 

with the regression equation being:  

𝑃𝐶𝑀 = −2.554 + 25.949(𝐶𝐴𝐼)  

The process has been summarised in a table. 

Table 13. Metrics of the stepwise backward elimination method for the PCM model 
 Step 1 Step 2 Step 3 Step 4 
 Coef P Coef P Coef P Coef P 

Constant -2.524  -2.525  -2.628  -2.554  

UCS -0.0049 0.635       

CAI 26.76 0 26.39 0 27.14 0 25.949 0 

E 0.0627 0.283 0.0624 0.283     

IVp -0.00021 0.351 -0.00025 0.231 -0.00014 0.437   

Metrics 

S 0.163404 0.162889 0.162995 0.162739 

R-sq 92.04% 92.02% 91.95% 91.91% 

R-sq(adj) 91.78% 91.83% 91.82% 91.85% 

Mallows’ Cp 5 3.23 2.38 0.99 

AICc -92.12 -94.09 -95.06 -96.57 

BIC -75.75 -80.36 -84.01 -88.24 

α to remove = 0.1 

The coefficient values not only support the significance 

of the intercept variable (–2.554) and CAI coefficient (25.949) 

with a value of 0.000, but also support the validity of the VIF 

value of 1.00, which rejects the multicollinearity assumption.  

The model signified excellent explanatory and predictive 

capabilities with an R² value of 91.91%, adjusted R² value of 
91.85%, and predicted R² value of 91.66%, which indicates 

that CAI has been able to explain a significant variation of the 

variability of PCM.  

Furthermore, the ANOVA table verified the validity of the 

robust model with an F-statistic value of 1420.14 and a 

regression p-value of 0.000, which not only indicated that CAI 

has a high degree of significance to predict PCM, but also 

supported that the model is free from multicollinearity.

Table 14. Coefficients table for the backward elimination PCM model 

Term Coef SE Coef T-Value P-Value VIF 

Constant -2.554 0.123 -20.78 0  

CAI 25.949 0.689 37.68 0 1 

Table 1. ANOVA metrics for the backward elimination PCM model 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 1 37.611 37.6111 1420.14 0 

CAI 1 37.611 37.6111 1420.14 0 

Error 125 3.311 0.0265   

Total 126 40.922    
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8.4. PCM Model by Forward Selection 

A parallel modelling was performed employing Minitab’s 

forward selection technique. In contrast to backwards 

elimination, this process starts from a null or empty model and 

stepwise adds predictors depending upon their role in 

enhancing model fitness.  

Assessment of each of the first candidate variables (UCS, 

CAI, E, and IVp) indicated that CAI had the least p-value 

(0.000) and thus was introduced into the model first. After 
inclusion in the model, the remaining candidates were tested 

in turn; none were found to be macro-statistically significant 

(p= 0.635 in UCS, p= 0.283 in E, p= 0.231 in IVp). Therefore, 

no further candidates were added to the model, and a quadratic 

optimality criterion function was reached that was equivalent 

to that from backward elimination: 

𝑃𝐶𝑀 = −2.554 + 25.949(𝐶𝐴𝐼)  

This equation precisely defines the linear relationship, in 

which PCM is estimated using the value of CAI. The steps 

have been summarised in a table. 

Table 16. Metrics of the stepwise forward selection method for the PCM model 
 Step 1 Step 2 Step 3 Step 4 
 Coef P Coef P Coef P Coef P 

Constant -2.554  -2.628  -2.525  -2.524  

CAI 25.949 0 27.14 0 26.39 0 26.76 0 

IVp   -0.00014 0.437 -0.00025 0.231 -0.00021 0.351 

E     0.0624 0.283 0.0627 0.283 

UCS       -0.0049 0.635 

Metrics 

S 
 

0.162739 

 

0.162995 

 

0.162889 

 

0.163404 

R-sq 
 

91.91% 
91.95% 92.02% 92.04% 

R-sq(adj) 
 

91.85% 
91.82% 91.83% 91.78% 

Mallows’ Cp 0.99 2.38 3.23 5 

AICc -96.57 
 

-95.06 

 

-94.09 

 

-92.12 

BIC 
 

-88.24 

 

-84.01 

 

-80.36 

 

-75.75 

Achieved minimum AICc = -96.57 

Table 17. Coefficients table for the forward selection PCM model 

Term Coef SE Coef T-Value P-Value VIF 

Constant -2.554 0.123 -20.78 0  

CAI 25.949 0.689 37.68 0 1 

Table 18. Model summary for the forward selection PCM model 

S R-sq R-sq(adj) R-sq(pred) 

0.162739 91.91% 91.85% 91.66% 

The coefficients table once again verifies the strong 

statistical significance of the two terms (p = 0.000) along with 

the absence of multicollinearity in the model (VIF = 1.00). The 
summary table mentions the Standard Error of Regression 

(SER) as 0.162739, which informs about the scale of the 

deviations.  

The value of R², Adjusted R², and Predicted R² is the same 

as that of the backward elimination model (91.91%, 91.85%, 

and 91.66%, respectively), signifying perfect explanatory 

fitness and generality. Finally, the Analysis of Variance 

(ANOVA) table confirms the statistical significance of the 

created model. The output further strengthens the significance 

of the model, with an F-statistic value of 1420.14 (p = 0.000). 
The degree of freedom values: 1 for regression and 125 for 

error – specify that the test has been performed on a dataset of 

127 observations. Furthermore, the forward selection model 

has given a minimum Akaike Information Criterion (AIC) of 

-96.57. In conclusion, both the backward elimination method 

and the forward selection technique yield the same single-

predictor regression equation, in which CAI emerges as the 

lone, significant predictor of PCM. The equation possesses 

high explanatory power, predictability, and simplicity. 
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Table 19. ANOVA Metric for the forward selection PCM model 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 1 37.611 37.6111 1420.14 0 

CAI 1 37.611 37.6111 1420.14 0 

Error 125 3.311 0.0265   

Total 126 40.922    

9. Model Validation 
The proposed models were verified using the unseen data 

subset, which was obtained from the original dataset. The data 

subset for verification was designed to incorporate every type 

of surface miner used at the chosen study sites. Furthermore, 

the data subset for verification was prepared to retain 

significant variations for the most material influencing factors, 

such as the UCS, IVp, CAI, and power-to-weight ratio of 

surface miners.  

Table 20. Statistical summary of the validation dataset 

Variable Count Mean StDev Minimum Median Maximum IQR 

UCS 16 21.45 4.15 13.61 22.44 29.31 5.25 

CAI 16 0.17763 0.02424 0.129 0.179 0.22 0.03575 

E 16 2.122 0.735 1.15 2.06 3.6 1.257 

IVp 16 946.8 257.4 529 913 1555 323.5 

NPR 16 20621 5131 13220 19233 32003 6791 

PCM 16 2.053 0.607 0.88 2.065 3.47 0.615 

For validation purposes, the values of the predicted 

Normalized Production Rate (NPR) and pick Consumption 

per 1000 tonnes (PCM) were compared with the actual values 

obtained from field measurements. The models are restated 

below for ready reference.  

𝑁𝑃𝑅 = 51413 − 591.7(𝑈𝐶𝑆) − 82046(𝐶𝐴𝐼) −
4.20(𝐼𝑉𝑝)  

𝑃𝐶𝑀 = −2.554 + 25.949(𝐶𝐴𝐼)  

The percentage error of prediction was calculated 

between actual and predicted values using the standard 

expression: 

% 𝐸𝑟𝑟𝑜𝑟 =
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒−𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒)

𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
× 100  

Table 21. Actual vs Predicted values of NPR and PCM 

Actual NPR Predicted NPR Percentage error Actual PCM Predicted PCM Percentage error 

13219.82 9489.153 -28.22 3.47 3.15478 -9.08 

17591.61 16051.61 -8.75 2.29 2.557953 11.70 

16303.44 16186.31 -0.72 2.65 2.428208 -8.37 

17546.29 16784.16 -4.34 2.27 2.402259 5.83 

18957.56 18218.56 -3.90 2.07 2.246565 8.53 

16788.13 16093.85 -4.14 2.58 2.661749 3.17 

16163.78 16590.14 2.64 2.36 2.6358 11.69 

18324.61 18260.13 -0.35 2.23 2.428208 8.89 

19631.69 20251.58 3.16 2.06 1.935177 -6.06 

19507.85 20622.42 5.71 1.81 1.909228 5.48 

21355.36 21391.72 0.17 1.99 1.831381 -7.97 

24360.3 23706.38 -2.68 1.7 1.519993 -10.59 

21993.2 22776.05 3.56 1.83 1.909228 4.33 

28553.89 27508 -3.66 1.3 1.260503 -3.04 

27636.85 28214.53 2.09 1.36 1.208605 -11.13 

32002.55 30554.23 -4.53 0.88 0.793421 -9.84 

To better assess the predictability, actual versus predicted 

scatter plots were employed. Scatter plots allow the direct 

rendering of the observed values on the x-axis, the values 

predicted by the model on the y-axis, with the 1:1 line 

connecting the values in a perfect correlation manner. The 

spatial arrangement of the data in relation to the line can 

convey the level of prediction accuracy, the nature of the 

systematic error, and the error patterns of the data. If the 

spatial arborization of the data aligns closely with the line, the 

data has made accurate predictions, while a larger spacing 
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from the line implies less precise prediction accuracy. 

Examination of the scatter plots reveals that the NPR model 

has a pretty good predictive ability across a majority of the 

data points, except for one strong outlier where the model 

significantly underpredicts the value. For the remaining 
points, the absolute percentage errors in the predictions made 

by the NPR model are relatively small, with most points 

having a percentage error of less than 5%. For the PCM, the 

error pattern is relatively evenly spread, although the 

percentage errors look relatively larger because the actual 

magnitude of the measured quantities is much smaller. For the 

PCM, the error spread is roughly between −11% and +12%, 

implying stable, although not uniformly accurate, predictive 

performance. There are positive as well as negative errors for 

the NPR and the PCM, implying that the predictive errors 

contain instances where the prediction either overestimated or 

underestimated the actual quantity. Although the −28.22% 

error in the NPR, classed as an outlier, contributes 

significantly to the overall error distribution, the remaining 
predictive results for the NPR imply that the model is 

functioning correctly for most operating conditions. The PCM 

predictions, although necessarily more affected by slight 

variations in numbers, are generally around a stable error 

level, implying stable performance at the various data points. 

From the above results, it is verified that the models generated 

are giving reliable predictions for both the NPR and PCM, and 

the differences in predictions are more accurate at determined 

conditions.

 
Fig. 3 Actual vs Predicted scatter Plot for NPR 

 
Fig. 4 Actual vs Predicted scatter Plot for PCM 
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10. Limitations of the Model 
Models developed are based on data gathered in coal 

mines where the dirt bands are present in the coal seams. Dirt 

bands are known to have a significant influence on cutting and 

total machine productivity, and the presence of these bands in 

certain coal seams exerts a significant effect on the cutting 

process and the overall efficiency and productivity at which 

the machines work. Hence, these models may not apply to coal 

seams having fewer dirt bands, as the conditions are pretty 

different. Additionally, the models do not include operational 

aspects such as cutting direction, operation mode, loading 

practices, and production planning, among others. These 
operational factors exercise considerable impact on the 

productivity rates for surface miners, whereas they were 

handled indirectly instead of being handled directly in the 

current modelling approach. 

11. Results and Discussion 
The models of regression designed for calculating the 

Estimated Normalized Production Rate (NPR) can predict 
well and faithfully reproduce the behavior of the values for all 

points except one, which acted as an obvious outlier. In the 

case of the Pick Consumption per 1000 tonnes  (PCM), the 

deviations of the predictions are more equally distributed but 

within a slightly broader range in percentage because of the 

low value of the PCM measurements. Additionally, it is easy 

to implement these models because of their linear form. 

Moreover, these models can be applied by practitioners in the 

field. Hence, the predictive accuracy obtained can be of great 

benefit to the production planning department, where it can be 

used as an approximation of production time and operational 

costs. 

However, there is a good deal of potential for 
improvement within models through the usage of machine 

learning methods, particularly when the datasets include 

geotechnical conditions from wider regions. It can efficiently 

decode complex non-linear relations, along with the 

processing of categorical variables, unlike linear models. 

Further, the current models include various key 

influencing parameters like Depth of cut, skill level of the 

operator, properties of intact and rock mass, machine 

characteristics, mine-specific habits of replacing picks, 

climatic conditions like rainfall, and operating method as 

constraints. They are not considered as predictors. Adding 

them to the models will enable improved predictive accuracy. 

12. Conclusion 
The study provides a complete overview of an experiment 

conducted to develop predictive models for the critical 

performance indicators of surface miners in coal mines. A total 

of 143 data observations were obtained for the locations 

shortlisted for this study. Out of these, 127 observations were 
used to train the models, and 16 observations were used for 

testing purposes. 

Table 22. Models developed for the prediction of KPIs of surface miners 

S. No KPI Predictive Model R2 

1. Normalized Production Rate 
𝑁𝑃𝑅 = 51413 − 591.7(𝑈𝐶𝑆) − 82046(𝐶𝐴𝐼)

− 4.20(𝐼𝑉𝑝) 
0.9617 

2. Pick Consumption per 1000 tonnes 𝑃𝐶𝑀 = −2.554 + 25.949(𝐶𝐴𝐼) 0.9166 

Finally, the developed models have been validated using 

a separate test dataset drawn from the original sample in a 

manner that ensured representation of all surface miner types 

employed at the selected sites. 

However, large data sets of other parameters, including 

machine life and human-machine interface from different 

geological settings, may be included in future studies to create 

more generalized models.  
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