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Abstract - Accurate corn yield forecasting is significant for farm agriculture to improve both farm production and productivity.
In agriculture, forecasting is important to ensure food security. This study presents an improved Gated Recurrent Unit (GRU)
forecasting approach that combines Multiple Imputation by Chained Equations (MICE), Principal Component Analysis (PCA),
and Exponential Linear Unit (ELU) activation functions. This study is novel because it combines the PCA and ELU in a GRU
architecture for agricultural forecasting. Previous study shows little to no work exploring this specific approach, or it is rarely
seen in existing literature. MICE accurately imputes missing agronomic information, and PCA deals with multicollinearity and
reduction of feature dimensions. This optimized input enhances gradient flow during training and mitigates the vanishing
gradient issue common in deep recurrent models. Moreover, the application of the ELU activation stabilizes learning as it keeps
small gradient values. The experiments showed that the model trained with dimensionality reduction with PCA, ELU activation,
enhances performance with much higher accuracy than the baseline GRU models. The result produces fewer forecasting errors
and consistent results with the actual yield values. These demonstrate that using the data imputation method combined with the
ELU activation function enhances the performance of deep learning models in corn yield forecasting. This innovative solution
gives farmers and agricultural planners managing a small farm or large operations the ability to make better decisions based
on data.
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interactions among these and additional factors, corn yield
forecasting, using historical data with missing values and

1. Introduction
Corn serves as a worldwide essential food crop, which

also functions as animal feed and provides raw materials for
numerous industrial products that people use daily. Corn
production directly influences food security, agricultural
sustainability, and economic stability because developing
countries depend on agriculture for their economic
foundation. The most important and challenging part in
agriculture is predicting crop yields because farmers are still
using traditional methods in farming. The need to predict corn
yields accurately becomes essential because it helps farmers
make better decisions about farm operations and market
placement of corn and supports the creation of agricultural
governmental policies. Stakeholders will be able to evaluate
their product availability by using yield forecasts together
with other relevant data. Stakeholders must utilize reliable
forecasts, along with additional elements, to achieve optimal
resource management and mitigate risk from climate and
environmental variability. Corn yield forecasting is complex
due to multiple factors of soil characteristics, weather
conditions, and crop management practices. Due to
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multiple irregularities, is complicated. Commonly, linear
regression methods and multiple regression analysis form the
foundation of agricultural research related to crop yield
forecasting. Across agricultural research, statistical techniques
for these types of yield prediction, while having a generic
method for implementation and interpretation, are restricted to
using only linear or discrete data types based on the limitations
of linear correlation models. Linear models for climate record
statistical yield prediction will not provide accurate results for
missing climate record values or missing yield history data.
[1] The complexity and the extent of predicted yields
associated with corn are compounded by the wide range of
interrelated agronomic and environmental factors. Currently,
the development of various machine learning and deep
learning techniques has provided the agricultural industry with
predictive models for the future yield of corn that provide a
higher level of accuracy and dependability. Furthermore,
given the ongoing rapid pace of transformation within the
agricultural industry due to the current environment, the use
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of deep learning models for yield prediction methods holds
promise for providing optimal sustainable practices and
sustainable farm operations. [2]

The agricultural sector shows growing interest in using
multiple GRUs for different farming tasks, which include crop
yield forecasting, weather prediction, natural language
processing, and other applications of temporal data. [3] The
GRU model achieves better performance results at lower
computational cost when compared to LSTM and other
models. LSTM models develop slowly due to the increase in
the time it takes to train such models, and on the other hand,
are classified as being an example of a large-scale model. [4]
The performance of a GRU improves through advanced data
pre-processing methods and activation function optimization
techniques. MICE stand out as the most comprehensive
method for addressing missing data with GRUS. [5]

To reduce the dimensions and lessen issues of
multicollinearity, a common challenge in GRU, PCA was
applied. PCA is noted to be an outstanding method to extract
the most important patterns from complex datasets with
minimal information loss and can thereby enhance the
performance of the GRU models applied in high-dimensional
cases. [6] The Exponential Linear Unit (ELU) activation
function further helps in keeping the gradient flows stable and
thus mitigates the vanishing gradient problem. Overall, GRU
effectively facilitates learning complex patterns, hence giving
better performance for models on agricultural data.

To fill this gap, the researchers introduce a new method
of corn vyield forecasting through a single pipeline, such as
MICE-based imputation to handle missing data, PCA-based
dimensionality reduction to remove complex features, and a
GRU model with ELU activation functions to increase
gradient flow. The difference between the method presented
here and methods commonly used in previous studies is that
many studies have focused only on the architecture of the yield
forecasting model (LSTM or GRU) and/or the preprocessing
methods used in their work, without considering the combined
effect of all three methods as a whole of enhancing forecasting
accuracy, the stability of reaching a predicted value, and the
robustness of the model for predicting corn yields. Thus, by
integrating the three methods into one framework, the
researchers have created a novel framework for corn yield
forecasting using real-world agronomic datasets containing
both incomplete observations and features that are correlated.

2. Related Work

Over the years, machine learning methods have also been
increasingly applied to agriculture because the models can
interpret the relationship between complex patterns of inputs
and outputs. [7] Forecasting crop yield is an important aspect
for planning in the agriculture sector. A good forecasting
method helps farmers decide early in preparation for the
harvest period. [8] The data for traditional statistical methods

308

is difficult to handle due to multiple characteristics, such as
weather, soil, and farming practices. [1] Further research
proves that deep learning models show a good performance in
predicting crop yield. GRU for agricultural data since it can
deal with the changing patterns over time [9]. Traditional
statistical approaches, such as linear regression, have gained
widespread acceptance in traditional crop yield forecasting
methods due to their relative simplicity and interpretability. In
reality, however, traditional modelling techniques do not
sufficiently represent the complexities of agricultural
production systems because they rely on assumptions of a
linear relationship between farm production and climatic or
environmental variables, assume that all relevant variables are
independent of each other, and are based on a complete
dataset. The assumptions of linearity, independence, and
complete datasets do not hold for most agricultural production
systems, and as such, linear regression models do not provide
adequate representations of the complex nature of yield
variation induced by climatic or environmental factors and
associated agronomic interactions, nor do they yield very
accurate or robust forecasting of crop yield potential.

2.1. Handling Missing Data in Agronomic Datasets

Agricultural researchers face common problems, such as
missing data, incorrect measurements, equipment failure, and
incomplete field sampling, which can complicate their work
[10]. The most challenging aspect of farming is incomplete
data, as most analytical tools do not function well when
information is incomplete. It is essential to employ effective
methods for addressing these issues. The model becomes more
reliable and more accurate by replacing missing values. [11]
Before the data is analyzed, the missing values will be
addressed first. This can cause biased or inaccurate results if
ignored. They may occur randomly, from systematic
problems, or at other times, they happen while collecting or
preprocessing data. [12] Missing data imputation has become
important since real-world datasets almost always contain
missing values. [13]

The common techniques for imputing missing values are
KNN, MICE, and EM imputation; each technique uses
different statistical methods. [11] The K-Nearest Neighbors
algorithm performs well for classification and regression in
agriculture by classifying new data by finding similarities to
existing data. [14] As an instance-based learning method and
a non-parametric approach, it deals with various agricultural
datasets, such as crop yield forecasting and disease diagnosis.
[15]. MICE is a reliable imputation technique that handles
complex missing data patterns across different data types. [16]
In contrast to single imputation methods that fill in missing
values once, MICE creates multiple complete datasets, each
with a different possible imputation for the missing values.
[11] After reviewing the literature of the different authors, the
researchers found that MICE consistently outperforms other
imputation methods when it comes to preserving the original
data distribution and variability.
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2.2. GRU Models for Agriculture Time Series Forecasting
Farmers and researchers are increasingly using machine
learning technologies in the agricultural sector to analyze
agricultural data, create forecasts of crop yields, and design
new agricultural methods that reduce the waste of resources.
[17, 18] A popular machine learning model for analyzing
weather information is the recurrent neural network model,
including both Gated Recurrent Units (GRUs) and Long
Short-Term Memory (LSTM) models. Many researchers have
used Recurrent Neural Networks (RNNs), LSTMs, and GRUs
to improve cancer prediction [19] and improve the way that
analyzes the stock market using sentiment-aware sequential
models [20], as well as improve the oil & gas production
forecasting [21] and develop hydrological models for green
roofs. [22] As more comparisons of GRU and LSTM have
shown, there are both advantages and disadvantages
associated with using GRU and LSTM models in time-series
forecasting applications; GRUs typically train faster than
LSTMs do in a lot of instances [23], whereas bidirectional
GRU models have outperformed LSTMs in text classification.
[24] While GRU offers advantages of faster training times and
lower complexity due to fewer hyperparameters than LSTM,
the benefits are seen more so when the models are trained on
a small or limited number of datasets. [25] Therefore, as these
advantages support the need for quick and efficient access to
data to support productive agriculture, GRUs offer a viable
model for farmers and researchers who have limited access to
large volumes of data due to cost or other restrictions. GRUs
have also been utilized effectively in previous studies to
identify patterns within agricultural data to support accurate
cropping practices and irrigation planning. [3] Additionally,
GRU maodels are one class of deep learning technologies that
have improved forecast accuracy for crop yield estimates,
weather forecasts, and early detection of crop diseases. [26]

2.3. Forecast Modeling using PCA

Principal Component Analysis (PCA) is a way to take
large amounts of data with correlated variables while
preserving key patterns of complex datasets. [27] PCA in
agricultural research helps by reducing dimensionality and
multicollinearity, which improves model accuracy and makes
it easier to understand and faster to run. By removing
correlations and reducing dimensions, PCA makes the
analysis simpler, and the results are easier to interpret. [28]
This technique is useful for large farming datasets with many
correlated features since it identifies the most important
feature. [29]

2.4. Activation Functions Selection and Gradient Flow

The optimal choice of the activation function
significantly influences the gradient flow in deep learning,
such as the GRU-based model for time-series forecasting. [30,
31] For example, ReLU, Leaky RelLU, and ELU are good at
ignoring the problem of vanishing gradient and letting the
model train properly. [32, 33] Though ReLU is simple and
boosts sparsity, neurons can always be permanently
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deactivated, and this is what was known as the “dying ReLU”.
[34] Recent studies have used smooth, non-saturating
functions like Swish and ELU for better convergence and
stability in training. Among them, ELU has the negative
values that push the mean activations closer to zero for faster
convergence and better performance compared to ReLU. [35]

2.5. Research Gap and Motivation

Existing research has established that utilizing recurrent
neural networks, primarily Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) models, enhances
the ability to predict crop yields accurately. However, most
studies utilized just one preprocessing methodology, and there
is generally insufficient exploration of how imputation
quality, feature redundancy, and activation function
parameters interact to affect (1) model training stability and
(2) model generalization performance. Specifically, little
exploration has been conducted regarding the benefit of jointly
applying Multiple Imputation using Chained Equations
(MICE) and Principal Component Analysis (PCA) as a single
integrated preprocessing methodology within a GRU-based
model for predicting corn vyields, as well as optimizing
activation functions. Therefore, to address these gaps, the goal
of this research is to investigate the integrated contribution of
MICE, PCA, and Exponential Linear Units (ELU) within a
GRU framework.

3. Materials and Methods

The GRU architecture was selected for its lower
complexity in terms of the number of model parameters
compared to LSTMs, as well as its ability to converge more
rapidly. This makes the GRU suitable for use with agricultural
datasets that often have fewer data points. To handle missing
data and maintain the relationship between predictor
variables, MICE was used. PCA was used to reduce the
number of predictor variables (dimensionality reduction) and
help solve the problem of multicollinearity among variables,
thereby increasing the stability of the model. The ELU
activation function helps to improve the flow of gradients
(gradient flow) and minimize problems related to vanishing
gradients associated with deep recurrent networks. Model
accuracy was measured using conventional evaluation
metrics, the Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and R-Squared (R?). The statistical
significance was determined through paired t-tests to validate
the performance of the baseline model.

3.1. Input Data and Preprocessing

The data collected from the Abuyog Experimental Station
includes rainfall records collected over the past ten years and
agronomic attributes of the corn yield. The dataset was
examined before model development for missing values and
inconsistencies, which are common in long-term agricultural
data collection. Using MICE (Multiple Imputation by Chained
Equations) methodology to fill in gaps from missing data to
complete the datasets. The missing values were imputed
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conditionally on the observed variables through the
Iterativelmputer’s methodology to impute missing value
variables iteratively onto the observed variable set. This
methodology models each missing variable as a function of
the other, remaining observed variables, in an iterative
process. For this research study, the imputer was configured
to a maximum of 10 iterations, with a fixed random seed
assigned for the purposes of replicability. This methodology
was chosen due to its capability of maintaining inter-
relationships between the variables, and due to the reduced
potential for bias that it offers when compared to single
imputation models.

To assess the robustness of the imputation process, an
artificial-missingness validation strategy was employed. A
fixed proportion of observed values was temporarily masked,
imputed using the same MICE configuration, and compared
against the original values using standard error metrics,
including Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and the coefficient of determination (R2). This
evaluation was performed exclusively on the masked entries
to provide a valid assessment of imputation quality.

After imputing the missing data, 80% of the dataset was
assigned to the training set and 20% to the testing set. Data
augmentation techniques were then applied only to the
training dataset to increase the diversity of unique examples
available during model training while minimizing any
potential for over-fitting to occur. The data in the testing set
was not modified, which provides a true measure of how well
the model will perform when presented with new, unseen data.

3.2. Feature Extraction using PCA

Principal Component Analysis (PCA) was used to reduce
multicollinearity, improve efficiency, and decrease
dimensionality within the dataset's features by applying PCA
to them to analyze their relationships and interdependencies.
The original raw dataset contains nine (9) input features, eight
(8) agronomical and rainfall data, both measured on a monthly
scale. The PCA identified seven (7) principal components that
were able to explain 95% of the variance across all nine input
variables; therefore, after applying PCA, the original feature
space was reduced from nine (9) input variables to seven (7)
principal components. These identified principal components
became the basis for training the GRU (Gated Recurrent Unit)
model, while retaining the target variable's original scale for
interpretation. The selected variance threshold represents a
trade-off  between information  preservation  and
dimensionality reduction.

A lower number of retained components may provide a
loss of important agricultural information, and a higher
number of retained components would make the reduced data
less efficient for analysis and computation. This configuration
has been selected to provide an optimal balance between the
two by preserving most of the variability of the original dataset
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but increasing the stability of the training model and the
efficiency of training the model. The target variable has been
maintained in its original scale to continue allowing for ease
of interpretation.

3.3. GRU Model Configuration

The GRU learns sequential data patterns effectively while
addressing the vanishing gradient issue through its structure,
similar to that of LSTM. A GRU provides a less complex
architecture with fewer parameters than an LSTM, while the
performance of the two models is quite similar in most time
series forecasting applications. The GRU model for this
research used an Exponential Linear Unit (ELU) activation
function. The ELU activation function provides better
performance than ReLU because it solves the vanishing
gradient problem more effectively when used in deep neural
networks. The ELU activation function produces negative
values, which helps improve model learning dynamics and
speed up convergence. The model training used the Adam
optimization algorithm together with a Mean Squared Error
(MSE) loss function.

3.4. Model Evaluation and Convergence Analysis

The model performance was evaluated by Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
and R2 (Coefficient of determination). These metrics reflect
different types of errors. The MAE was the average error size
with respect to how far off the forecasts are. RMSE allows for
heavier penalties on large deviations from actual values, while
also looking at how sensitive the error is to large deviations,
while R? indicates what proportion of the variance in corn
yield is explained by the model itself. All three metrics that
were used are common in the determination of yield forecasts;
therefore, using all three provides a different perspective on
the level of accuracy associated with model forecasting.

Throughout the entire training process, the training loss
and the validation loss were compared against each other for
convergence indication. The point of model convergence
would be below the minimum value for validation loss; this is
when model learning becomes stable and is at the least risk for
over-fitting.

3.5. Statistical Significance Testing

To analyze the validity of the difference in performance
observed between both GRU Models (with and without PCA),
statistical significance testing for paired t-tests was performed
at o = 0.05. Pairing the absolute forecasting errors produced
by the GRU Models evaluated on the same test dataset allowed
for the evaluation of the statistically significant difference in
forecasting error produced by each of the models used. The
decision to compare the models' forecasting errors via a paired
analysis was based on determining if the difference between
the two model configurations is statistically significant and
therefore not likely to have happened by chance.
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4. Results and Discussion
4.1. Handling Missing Values with MICE

Multiple Imputation by Chained Equations (MICE) was
used to address the agronomic data that is common to
agriculture, which includes missing values, surpassing other
methods of imputation. To determine what activation function
for the GRU with MICE imputation, the four activation
functions were tested: ELU, Leaky ReL U, ReL U, and Swish.
To evaluate the forecasting accuracy, the Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and R2 metrics
were used. The convergence epoch was also used in this study
to measure how quickly the model reaches stability during
training and validation loss at convergence to measure how

accurately the model performs once the training stabilizes.
Table 1 indicates that the MICE-ELU performed best with a
Mean Absolute Error (MAE) of 0.0007, Root Mean Squared
Error (RMSE) of 0.0008, and an R2 value of 0.9999. Also, it
converged faster, achieving its best performance in only 4
epochs with a validation loss of 0.0011. While MICE-Leaky
ReLU achieved a slightly lower validation loss of 0.0005, its
error metrics were somewhat higher than MICE-ELU. MICE-
Swish performed well in terms of R? but needed 6 epochs to
converge-the longest among the three. Based on these results,
MICE-ELU offers the best balance of accuracy, efficiency,
and stability, making it the preferred choice for subsequent
experiments with PCA-based dimensionality reduction and
model comparisons.

Table 1. GRU Performance of activation functions using MICE

Activation MAE RMSE R? Ep. Val. Loss
ELU 0.0007 0.0008 0.9999 4 0.0011

Leaky ReLU 0.0010 0.0012 0.9999 5 0.0005
RelL U 0.0052 0.0070 0.9999 5 0.0003
Swish 0.0080 0.0107 0.9998 6 0.0001

4.1.1. Impact of MICE Imputation on Dataset Completeness
PCA reduced the original nine features to seven while
keeping most of the important information. (a) shows the
missing value patterns that were simulated before using
Multiple Imputation by Chained Equations (MICE). The
brown areas show that about 10% of the agronomic traits and
rainfall data are missing. (b) shows the dataset after imputation
with MICE. The uniform light shading means all missing
values were filled in correctly. This shows how MICE can fill
in missing values while keeping the data structure. Because

the missing data pattern follows Missing at Random (MAR),
MICE works well here. It utilizes the correlations between
features to make unbiased imputations, making it suitable for
the dataset. The heatmap shows that there is a non-uniform
distribution of missingness in the agronomic and climatic
variables and establishes the need for a strong imputation
method. Because of this missingness pattern, it is more
appropriate to use MICE, which will keep the relationships
between the different variables instead of just simply
removing them or imputing a mean.

Heatmap of Missing Values Before and After MICE Imputation
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Fig. 1 Heatmap of missing values: (a) Simulated before MICE, and (b) After MICE imputation.
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4.2. Dimensionality Reduction via PCA

After the correlation analysis, PCA was run on the
normalized dataset (with imputed values by MICE) to address
multicollinearity and reduce dimensions without losing
important information. Seven components captured about
95% of the total variance, which contained sufficient
information for further analysis. The loadings of the principal
component analysis show that the original agronomic
variables and original rainfall data, and their contributions to
the first seven principal components.

The darker color represents higher absolute values, which
indicates the feature has more influence on the principal
component. Rainfall shows a strong contribution to PC4
because it has an absolute value of 0.90 on this component, as
demonstrated in the Figure. The C, D, and G variables all have
a strong loading in multiple principal components, indicating
these variables both capture important patterns and differences
in this dataset. This also supports using PCA to reduce the
multicollinearity of the data while still allowing for
meaningful agronomic information to be left in the dataset.

PCA Loadings Heatmap (Top 7 PCs with Rainfall)
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Scree Plot of PCA Components (with Rainfall)
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Fig. 3 Scree plot of PCA components with rainfall, showing explained variance ratio for each component

4.2.1. Scree Plot Analysis

A scree plot was created to find the best number of
principal components for the corn yield dataset. The plot
shows how much variance each component explains, helping
identify where adding more components does not improve
forecasting much. Number of Principal Components to retain
95% variance: 7. In Figure 3, a Scree Plot was created using
PCA components for the MICE-imputed corn dataset. The
first three principal components explain most of the variance:
PC1 accounts for about 27%, PC2 for roughly 20%, and PC3
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for around 17%. Later components contribute less to the
overall data variability. Since the total variance reaches 95%
by the seventh component, the first seven PCs were selected
for further analysis. This reduced the dimensionality from nine
input features to seven with minimal information loss,
improving model efficiency while maintaining predictive
accuracy. This was how seven principal components were
chosen, as they represent an optimal trade-off between
reducing the dimensionality of the data and keeping as much
information about the agronomic variables intact.
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4.2.2. Cumulative Variance Plot

Figure 4 shows the cumulative explained variance of the
principal components from the MICE-imputed dataset with
rainfall data. The cumulative variance rises quickly in the first
few components, hitting around 64% with the first three
components and going over 95% by the seventh component.
This means the first seven components are enough to capture
most of the original agronomic traits and rainfall data while
reducing dimensionality. These results verify that PCA is
capable of reducing dimensionality in the feature space very
effectively without losing a considerable amount of
information, thus making it suitable for creating optimized
inputs for the GRU.

4.3. GRU Forecasting Accuracy before and after PCA

PCA reduced the nine original features to seven while
keeping most of the dataset's variance. Using the original
dataset, the GRU model had a Mean Absolute Error (MAE) of
142.06, a Root Mean Squared Error (RMSE) of 158.89, and
an Rz value of 0.1804.

After applying PCA, the results got much better: MAE
dropped to 58.43, RMSE to 73.26, and R? jumped to 0.8258.
MAE dropped down by about 58.8% and RMSE by 53.9%. A
paired t-test confirmed the MAE reduction was significant (t
= 2.3369, p = 0.0476), indicating PCA reduced redundancy
and improved forecasting accuracy.

Cumulative Explained Variance (with Rainfall)
—— Cumulative Explained Variance 95% variance threshold
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g 5
2 4
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g — - . - © & .
E — ’ ’
O 0 T T T T T T T
1 2 3 4 5 6 7 8 9
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Fig. 4 Variance retention across principal components
Table 2. GRU model performance before and after PCA
Model Features MAE RMSE R?Score
GRU (Original Data) 9 142.06 158.89 0.1804
GRU (PCA Data) 7 58.43 73.26 0.8258
Performance Comparison: GRU Original vs. PCA Data -
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Fig. 5 GRU model performance with original versus PCA-reduced features
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Figure 5 shows that PCA improved the model
performance by reducing the features from nine down to
seven, thus yielding MAE and RMSE, lower error rates, and a
higher R? score, showing better forecasting accuracy.

The comparison of forecasting error and explanatory
power for each model after introducing the use of PCA
demonstrates that a large decrease in forecasting error and a
large increase in explanatory power occurred as a result of the
PCA process.

Thus, it can be concluded that through reducing
dimensionality using PCA, the GRU's forecasting accuracy is
enhanced due to the reduction of feature redundancy.

4.4. GRU Model Performance and Convergence Analysis
PCA-Reduced Features

Figure 6 shows the training and validation loss curves for
the GRU model using MICE, PCA, and ELU activation. Both
curves drop sharply in the first few epochs and level off at low
values after around 20 epochs. The training and validation
losses follow each other closely, showing the model converges
well and generalizes without overfitting. This shows that the
GRU model is effective for corn yield forecasting. The
convergence curves indicate that training loss and validation
loss stabilized more smoothly and faster when using PCA
features compared to all features. This indicates an
enhancement in training stability through reduced overfitting
caused by a more compact and well-conditioned input space.

Final GRU Model Convergence (MICE + PCA + ELU)
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== == Validation Loss
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Fig. 6 GRU training behavior analysis

4.5. Discussion: Integrated Effect of MICE, PCA, and GRU

These findings suggest that different methods of
preprocessing have a major impact on the accuracy and
stability of predicting corn yields using GRU models. Data
imputation using MICE will provide complete and accurate
inputs into the model, and PCA will increase the predictive
accuracy of the GRU model while also improving
convergence  stability through the reduction of
multicollinearity. Thus, using a combination of data
imputation and dimensionality reduction with GRU models
provides a viable and effective method for forecasting
agricultural time-series data, especially in situations where the
dataset may be limited.

5. Conclusion

This research reveals that a novel forecasting approach
that combines Gated Recurrent Units (GRU) with MICE,
PCA, and ELU is successful in improving corn vyield
forecasting accuracy. GRU combined with PCA yielded a
Mean Absolute Error (MAE) of 58.43, a Root Mean Squared
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Error (RMSE) of 73.26, and an R-squared of 0.8258.
Compared to the original imputed features, the R-squared
value of 0.1804 was much lower. The t-test for paired
differences evaluating forecasting error obtained a t-statistic
of 2.3369 and a p-value of 0.0476, indicating that this
improvement was statistically significant at the 0.05 level.

The findings of the study support the claim that modeling
corn yield forecasting using GRU with MICE, PCA, and ELU
activation is a reliable and robust approach for accurate
forecasting of corn vyield, while improving the training
process, as it reduces the vanishing gradient problem
experienced in recurrent models.
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