
International Journal of Engineering Trends and Technology- May to June Issue 2011

ISSN:2231-5381 - 73 - IJETT

Adaptive Join Operators for Result Rate
Optimization on Streaming Inputs

1.Mrs. M. Mary Rexcy Asha,

2.Miss R.Ishwariya,

3. Ms. M. Geetha
1 Associate Professor, Department of M.C.A, Panimalar Engineering College, Chennai

 2 PG Scholar, Department of M.C.A, Panimalar Engineering College, Chennai.
3 Associate Professor, Department of M.C.A, Panimalar Engineering College, Chennai

ABSTRACT Adaptive join algorithms have recently attracted a lot of attention in emerging
applications where data are provided by autonomous data sources through heterogeneous network
environments. Their main advantage over traditional join techniques is that they can start producing
join results as soon as the first input tuples are available, thus, improving pipelining by smoothing join
result production and by masking source or network delays. In this paper, The first propose Double
Index NEsted-loops Reactive join (DINER), a new adaptive two-way join algorithm for result rate
maximization. DINER combines two key elements: an intuitive flushing policy that aims to increase
the productivity of in-memory tuples in producing results during the online phase of the join, and a
novel reentrant join technique that allows the algorithm to rapidly switch between processing in-
memory and disk-resident tuples, thus, better exploiting temporary delays when new data are not
available. Then extend the applicability of the proposed technique for a more challenging setup:
handling more than two inputs. Multiple Index NEsted-loop Reactive join (MINER) is a multiway join
operator that inherits its principles from DINER.

I. INTRODUCTION
Adaptive join algorithms were created in order
to lift the limitations of traditional join
algorithms in such environments. By being
able to produce results whenever input tuples
become available, adaptive join algorithms
overcome situations like initial delay, slow
data delivery, or bursty arrival, which can
affect the efficiency of the join. All existing
algorithms work in three stages. During the
Arriving phase, a newly arrived tuple is stored
in memory and it is matched against memory-
resident tuples belonging to the other relations
participating in the join. Since the allocated
memory for the join operation is limited and
often much smaller than the volume of the
incoming data, this results in tuple migration to
disk. The decision on what to flush to disk
influences significantly the number of results
produced during the Arriving phase. The
Arriving phase is suspended when all data
sources are temporarily blocked and a Reactive
phase kicks in and starts joining part of the
tuples that have been flushed to disk. An
important desideratum of this phase is the
prompt handover to the Arriving phase as soon
as any of the data sources restarts sending
tuples. Each algorithm has a handover delay

which depends on the minimum unit of work
that needs to be completed before switching
phases. This delay has not received attention in
the past, but show that it can easily lead to
input buffer overflow, lost tuples, and henc
incorrect results. When all sources complete
the data transmission, a Cleanup phase is
activated and the tuple that were not joined in
the previous phases (due to flushin of tuples to
disk) are brought from disk and joined. Even if
the overall strategy has been proposed for a
multiway join, most existing algorithms are
limited to a two-way join. Devising an
effective multiway adaptive join operator is a
challenge in which little progress has been
made.In this paper, To propose two new
adaptive join algorithms for output rate
maximization in data processing over
autonomous distributed sources. The first
algorithm, Double Index NEsted-loop Reactive
join (DINER) is applicable for two inputs,
while Multiple Index NEsted-loop Reactive
join (MINER) can be used for joining an
arbitrary number of input sources. DINER
follows the same overall pattern of execution
discussed earlier but incorporates a series of
novel techniques and ideas that make it faster,

International Journal of Engineering Trends and Technology- May to June Issue 2011

ISSN:2231-5381 - 74 - IJETT

leaner (in memory use), and more adaptive
than its predecessors.
More specifically, the key differences between
DINER and existing algorithms are 1) an
intuitive flushing policy for the Arriving phase
that aims at maximizing the amount of overlap
of the join attribute values between memory
resident tuples of the two relations and 2) a
lightweight Reactive phase that allows the
algorithm to quickly move into processing
tuples that were flushed to disk when both data
sources block. The key idea of our flushing
policy is to create and adaptively maintain
three nonoverlapping value regions that
partition the join attribute domain, measure the
“join benefit” of each region at every flushing
decision point, and flush tuples from the region
that doesn’t produce many join results in a way
that permits easy maintenance of the three-way
partition of the values. As will be explained,
proper management of the three partitions
allows us to increase the number of tuples with
matching values on their join attribute from the
two relations, thus, maximizing the output rate.
When tuples are flushed to disk they are
organized into sorted blocks using an efficient
index structure, maintained separately for each
relation (thus, the part “Double Index” in
DINER). This optimization results in faster
processing of these tuples during the Reactive
and Cleanup phases. The Reactive phase of
DINER employs a symmetric nested loop join
process, combined with novel bookkeeping
that allows the algorithm to react to the

unpredictability of the data sources. The fusion
of the two techniques allows DINER to make
much more efficient use of available main
memory. To demonstrate in the experiments
that DINER has a higher rate of join result
production and is much more adaptive to
changes in the environment, including changes
in the value distributions of the streamed tuples
and in their arrival rates.MINER extends
DINER to multiway joins and it maintains all
the distinctive and efficiency generating
properties of DINER. MINER maximizes the
output rate by: 1) adopting an efficient probing
sequence for new incoming tuples which aims
to reduce the processing overhead by
interrupting index lookups early for those
tuples that do not participate in the overall
result; 2) applying an effective flushing policy
that keeps in memory the tuples that produce
results, in a manner similar to DINER; and 3)
activating a Reactive phase when all inputs are
blocked, which joins on-disk tuples while
keeping the result correct and being able to
promptly hand over in the presence of new
input. Compared to DINER, MINER faces
additional challenges namely: 1) updating and
synchronizing the statistics for each join
attribute during the online phase, and 2) more
complicated bookkeeping in order to be able to
guarantee correctness and prompt handover
during reactive phase.To generalize the
reactive phase of DINER for multiple inputs
using a novel scheme that dynamically changes
the roles between relations.

II RELATED WORK
Existing work on adaptive join techniques can
be classified in two groups: hash based and
sort based Examples of hash-based algorithms
include DPHJ and XJoin , the first of a new
generation of adaptive nonblocking join
algorithms to be proposed. XJoin was inspired
by Symmetric Hash Join (SHJ) which
represented the first step toward avoiding the
blocking behavior of the traditional hash-based
algorithms. SHJ required both relations to fit in
memory; however, XJoin removes this
restriction. MJoin [algorithm appeared as an
enhancement of XJoin in which its
applicability is extended to scenarios where
more than two inputs are present. The above-
mentioned algorithms were proposed for data
integration and online aggregation. Pipelined
hash join , developed concurrently with SHJ, is
also an extension of hash join and was
proposed for pipelined query plans in parallel
main memory environment.Algorithms based
on sorting were generally blocking,since the
original sort merge join algorithm required an
initial sorting on both relations before the

results could be obtained. Although there were
some improvements that attenuate the blocking
effect, the first efficient nonblocking sort-
based algorithm was PMJ .Hash Merge Join
(HMJ) , based on XJoin and PMJ, is a
nonblocking algorithm which tries to combine
the best parts of its predecessors while
avoiding their shortcomings.Finally, Rate-
based Progressive Join (RPJ) is an improved
version of HMJ that is the first algorithm to
make decisions, e.g., about flushing to disk,
based on the characteristics of the data.

III. PROPOSED SYSTEM

MODULE DESCRIPTION:

1. DINER (Double Index Nested-loops

Reactive) Module:

MODERN information processing is moving
into a realm where often need to process data
that are pushed or pulled from autonomous
data sources through heterogeneous
networks.The key differences between DINER
and existing algorithms are 1) an intuitive
flushing policy for the Arriving phase that

International Journal of Engineering Trends and Technology- May to June Issue 2011

ISSN:2231-5381 - 75 - IJETT

aims at maximizing the amount of overlap of
the join attribute values between memory
resident tuples of the two relations and 2) a
lightweight Reactive phase that allows the
algorithm to quickly move into processing
tuples that were flushed to disk when both data
sources block. The key idea of our flushing
policy is to create and adaptively maintain
three nonoverlapping value regions that
partition the join attribute domain, measure the
“join benefit” of each region at every flushing
decision point, and flush tuples from the region
that doesn’t produce many join results in a way
that permits easy maintenance of the three-way
partition of the values.When tuples are flushed
to disk they are organized into sorted blocks
using an efficient index structure, maintained
separately for each relation (thus, the part
“Double Index” in DINER). This optimization
results in faster processing of these tuples
during the Reactive and Cleanup phases. The
Reactive phase of DINER employs a
symmetric nested loop join process, combined
with novel bookkeeping that allows the
algorithm to react to the unpredictability of the
data sources. The fusion of the two techniques
allows DINER to make much more efficient
use of available main memory. To demonstrate
in the experiments that DINER has a higher
rate of join result production and is much more
adaptive to changes in the environment,
including changes in the value distributions of
the streamed tuples and in their arrival rates

2. MINER Module:
MINER extends DINER to multiway joins and
it maintains all the distinctive and efficiency
generating properties of DINER. MINER
maximizes the output rate by: 1) adopting an
efficient probing sequence for new incoming
tuples which aims to reduce the processing
overhead by interrupting index lookups early
for those tuples that do not participate in the
overall result; 2) applying an effective flushing
policy that keeps in memory the tuples that
produce results, in a manner similar to DINER;
and 3) activating a Reactive phase when all
inputs are blocked, which joins on-disk tuples
while keeping the result correct and being able
to promptly hand over in the presence of new
input. Compared to DINER, MINER faces
additional challenges namely: 1) updating and
synchronizing the statistics for each join
attribute during the online phase, and 2) more
complicated bookkeeping in order to be able to
guarantee correctness and prompt handover
during reactive phase.

3. Memory Allocated DINER & MINER
Module:

To investigate the impact that several
parameters may have on the performance of
the DINER algorithm, through a detailed
sensitivity analysis. Moreover, To evaluate the
performance of MINER when vary the amount
of memory allocated to the algorithm and the
number of inputs. The main findings of this
study include:

 A Faster Algorithm. DINER
provides result tuples at a
significantly higher rate, up to three
times in some cases, than existing
adaptive join algorithms during the
online phase. This also leads to a
faster computation of the overall join
result when there are bursty tuple
arrivals.

 A Leaner Algorithm. The DINER
algorithm further improves its relative
performance to the compared
algorithms in terms of produced
tuples during the online phase in more
constrained memory environments.
This is mainly attributed to our novel
flushing policy.

 A More Adaptive Algorithm. The
DINER algorithm has an even larger
performance advantage over existing
algorithms, when the values of the
join attribute are streamed according
to a nonstationary process. Moreover,
it better adjusts its execution when
there are unpredictable delays in tuple
arrivals, to produce more result tuples
during such delays.

 Suitable for Range Queries. The
DINER algorithm can also be applied
to joins involving range conditions for
the join attribute. PMJ also supports
range queries but, it is a generally
poor choice since its performance is
limited by its blocking behavior.

An Efficient Multiway Join Operator.
MINER retains the advantages of DINER
when multiple inputs are considered. MINER
provides tuples at a significantly higher rate
compared to MJoin during the online phase. In
the presence of four relations, which represents
a challenging setup, the percentage of results
obtained by MINER during the arriving phase
varies from 55 percent (when the allocated
memory is 5 percent of the total input size) to
more than 80 percent (when the allocated
memory size is equal to 20 percent of the total
input size).

The contributions of this project:-

 To introduce DINER a novel
adaptive join algorithm that supports
both equality and range join

International Journal of Engineering Trends and Technology- May to June Issue 2011

ISSN:2231-5381 - 76 - IJETT

predicates. DINER builds on an
intuitive flushing policy that aims at
maximizing the productivity of tuples
that are kept in memory. .

 DINER is the first algorithm to
address the need to quickly respond to
bursts of arriving data during the
Reactive phase. To propose a novel
extension to nested loops join for
processing disk-resident tuples when
both sources block, while being able
to swiftly respond to new data arrivals.

 To introduce MINER, a novel
adaptive multiway join algorithm that
maximizes the output rate, designed
for dealing with cases where data are
held by multiple remote sources. To
provide a thorough discussion of
existing algorithms, including
identifying some important
limitations, such as increased memory
consumption because of their inability
to quickly switch to the Arriving
phase and not being responsive
enough when value distributions
change.

 To provide an extensive experimental
study of DINER including
performance comparisons to existing
adaptive join algorithms and a
sensitivity analysis.The results
demonstrate the superiority of DINER
in a variety of realistic scenarios.
During the online phase of the
algorithm, DINER manages to
produce up to three times more results
compared to previous techniques. The
performance gains of DINER are
realized when using both real and
synthetic data and are increased when
fewer resources (memory) are given
to the algorithm. To also evaluate the
performance of MINER, and to show
that it is still possible to obtain early a
large percentage of results even in
more elaborated setups where data are
provided through multiple inputs. The
experimental study shows that the
performance of MINER is 60 times
higher compared to the existing
MJoin algorithm when a four-way
star join is executed in a constrained
memory environment.

IV. PERFORMANCE ANALYSIS
To demonstrate DINER’s superior
performance over a variety of real and
synthetic data sets in an environment without

network congestion or unexpected source
delays. To plot the cumulative number of
tuples produced by the join algorithms over
time, during the online phase for the CSCO
stock and the Weather data sets.To observe
that DINER has a much higher rate of tuples
produced that all other competitors. For the
stock data,while RPJ is not able to produce a
lot of tuples initially, it manages to catch up
with XJoin at the end. To compare DINER to
RPJ and HMJ on the real data sets when to
vary the amount of available memory as a
percentage of the total input size. The y axis
represents the tuples produced by RPJ and
HMJ at the end of their online phase (i.e., until
the two relations have arrived in full) as a
percentage of the number of tuples produced
by DINER over the same time. The DINER
algorithm significantly outperforms RPJ and
HMJ, producing up to 2.5 times more results
than the competitive techniques. The benefits
of DINER are more significant when the size
of the available
memory given to the join algorithms is
reduced.In the next set of experiments, to
evaluate the performance of the algorithms
when synthetic data are used. In all runs, each
relation contains 100,000 tuples.

V.CONCLUSIONS
In this work, To introduce DINER, a new
adaptive join algorithm for maximizing the
output rate of tuples, when two relations are
being streamed to and joined at a local site.The
advantages of DINER stem from 1) its
intuitive flushing policy that maximizes the
overlap among the join attributevalues between
the two relations, while flushing to disk tuples
that do not contribute to the result and 2) a
novel reentrant algorithm for joining disk-
resident tuples that were previously flushed to
disk. Moreover, DINER can efficiently handle
join predicates with range conditions, a feature
unique to this technique. To also present a
significant extension to this framework in
order to handle multiple inputs. The resulting
algorithm, MINER addresses additional
challenges, such as determining the proper
order in which to probe the in-memory tuples
of the relations, and a more complicated
bookkeeping process during the Reactive
phase of the join. Through this experimental
evaluation, we have demonstrated the
advantages of both algorithms on a variety of
real and synthetic data sets, their resilience in
the presence of varied data and network
characteristics and their robustness to
parameter changes.

International Journal of Engineering Trends and Technology- May to June Issue 2011

ISSN:2231-5381 - 77 - IJETT

VI.REFERENCES

[1] John Sharp R., (2008) ”Microsoft Visual C# Step by Step”, TataMcGraw Hill Publications, Seventh

Edition. pp. 144-176

[2] W. Hong and M. Stonebraker, “Optimization of Parallel Query Execution Plans in XPRS,” Proc.

Int’l Conf. Parallel and Distributed Information Systems (PDIS), 1991. pp. 219–311

[3] Z.G. Ives et al., “An Adaptive Query Execution System for Data Integration,” Proc. ACM

SIGMOD, 1999. pp. 176-287

[4] B. Pang and L. Lee, “Opinion Mining and Sentiment Analysis,” Foundations and Trends in

Information Retrieval, vol. 2, nos. 1–2, 2008, pp. 1–135.

[5] M. Hu and B. Liu, “Mining and Summarizing Customer Reviews,” Proc. ACM SIGKDD Conf.

Knowledge Discovery and Data Mining (KDD), ACM Press, 2004, pp. 168–177.

[6] N. Jindal and B. Liu, “Opinion Spam and Analysis,” Proc. Conf. Web Search and Web Data Mining

(WSDM), ACM Press, 2008, pp. 219–230.

SITES REFERRED

[7] http:// www.microsoft.com

[8] http://www.sourcefordgde.com

[9] http://www.ieee.org

[10] http://www.adobe.com/support/techdocs/321644.html

