Data hiding in Digital Video by Watermarking

Jadhav Shubhashri N
Electronics & Telecommunication Department
G.S.Moze College of Engineering, Pune
University of Pune

V.N.Ghodke
Assistant Professor, E&TC Dept
AISSMS’S IOIT, Pune
University of Pune

Abstract— Now a days there is use of digital multimedia applications are increased. Hence during extensive use of these applications it is necessary to provide security and copyright protection. Copyright protection for digital applications is improved by using a new technology “Digital Watermarking”. In this paper, the data hiding in digital video is introduced by the process of Watermarking. The embedding of data is based on Discrete Wavelet Transform and the data is embedded in individual video frame using block based Principal Component Analysis. The embedded data from video frame is then recovered by taking inverse DWT and inverse PCA. At the receiver, both the host video and data are recovered from the embedded bit stream.

Index Terms— Digital video, Discrete Wavelet Transform, Principle Component Analysis, binary watermark.

I. INTRODUCTION

The basic need for multimedia applications[1] is to provide copyright protection to prevent illicit copying and distribution of digital video. Copyright protection means inserting authentication data such as data such as ownership information and logo in the digital video that we want to protect. The authentication data can also extracted from the video and it can be used as authoritative proof to prove the ownership. Hence Digital Watermarking[2,3] technique newly emerged in the field of research. Watermarking is the process in which data embeds into the video or any kind of object and it can also be detected and extracted from the video to make an assertion about video or object. Digital watermarking techniques provides criteria of imperceptibility as well as robustness against all attacks[4,5]. Many digital watermarking schemes have proposed for still images and videos [6]. Hence some of which operate on uncompressed videos [7-8], and others embed watermarks directly into compressed videos [7].

Video watermarking can be classified into two categories which is based on the method of hiding watermark bits into the host video. These two categories are: Spatial domain & Transform domain. In Spatial domain watermarking, embedding and detection of watermark are performed by directly selecting the pixel intensity values of the video frame. On the other hand Transform domain [9] techniques, alter spatial pixel values of the host video according to a predetermined transform and it is observed that Transform domain more robust than spatial domain techniques.

In this paper, the data hiding in digital video is proposed. For that purpose Discrete Wavelet transform[10,11] & Block based Principle Component Analysis[12] is used. There are different types of transforms which are DFT, DCT, DWT etc. The DWT is more fast & computationally more efficient than other transforms. DWT has excellent spatio-frequency properties hence it is used to identify the areas to which the data can be embedded imperceptibly.

The data is embedded into the luminance component of the extracted frames as the Human visual system (HVS) is less sensitive to color than to luminance. The paper is presented in the form of chapters as follows; as chapter I contains introduction, chapter II contains watermarking scheme with DWT & PCA, chapter III contains system flow, algorithms and performance analysis with results and finally chapter IV contains conclusion.

II. WATERMARKING SCHEME WITH DWT & PCA

The watermarking scheme contains algorithm which is implemented by using DWT & PCA. So, let us discuss about DWT & PCA.

1. Digital video

A Digital Video System is shown in fig.1 An input to the system, a real visual scene is captured, typically with camera and converted to a sampled digital representation. This digital video signal may then be handled in the digital domain in a number of ways, including processing, storage and transmission. At the output of the system, the digital video signal is displaced to a viewer by reproducing 2-D video image on a 2-D display. Since a video can be viewed as a sequence of still images, video watermarking can be viewed simply as an extension of image watermarking. We use the Y component of a YUV color space representation for data hiding. This minimizes the color distortion in the embedded video[14].

2. Discrete Wavelet Transform

Discrete Wavelet Transform mostly used in the applications of signal processing. A single stage wavelet transformation consist of filtering operation that decomposes an image into four frequency bands as shown in (fig 1). It is 2D-DWT which is an application of 1D-DWT in horizontal &
vertical directions. The top-left corner of the transformed image (‘LL’) is the original image. The top-right corner (‘HL’) consists of residual vertical frequencies, the bottom-left corner (‘LH’) contains residual horizontal frequencies and the bottom-right corner (‘HH’) contains residual diagonal frequencies. The wavelet decomposition has some important properties. First, the number of wavelet ‘coefficients’ is the same as the number of pixels in the original image and so the transform is not inherently adding or removing information. Second, many of the coefficients of the high-frequency components (‘HH’, ‘HL’ and ‘LH’ at each stage) are zero or insignificant. This reflects the fact that much of the important information in an image is low-frequency. Third, the decomposition is not restricted by block boundaries (unlike the DCT) and hence may be a more flexible way of decorrelating the image data (i.e. concentrating the significant components into a few coefficients) than the block-based DCT. Since the HVS is less sensitive to high frequencies, embedding the watermark in high frequency sub-bands makes the watermark more imperceptible while embedding in low frequencies makes it more robust against various attacks.

![Figure 1. DWT sub-bands](image)

3. Principle Component Analysis

PCA is a useful statistical technique that has found application in fields such as face recognition and image compression, and is a common technique for finding patterns in data of high dimension[13]. It uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of uncorrelated variables called principal components. PCA is used for identifying patterns in data and expressing it by their similarities and differences. The advantages that PCA is powerful tool in the analysis of data, also once patterns in data get identified data can be compressed by reducing number of dimensions without loss in information. It covers standard deviation, covariance, eigenvectors and eigenvalues[13]. The data with maximum covariance are plotted together and is known as the first principal component. The first principle component contains maximum energy concentration.

Standard Deviation:

The average distance from the mean of the data set to a point. The way to calculate it is to compute the squares of the distance from each data point to the mean of the set, add them all up, divide by n-1 and take the positive square root.

Covariance:

Covariance is such a measure. Covariance is always measured between 2 dimensions. A measure of how much each of the dimensions varies from the mean with respect to each other.

Eigenvectors:

Eigenvectors can only be found for square matrices. And, not every square matrix has eigenvectors. For n x n matrix there are n eigenvector.

III. SYSTEM FLOW

![Fig.2 Block Diagram of Watermarking](image)

3 Algorithms for watermarking using DWT and PCA

It consist of two algorithms, Algorithm 1 and Algorithm 2. Algorithm 1 consist of embedding and extraction algorithms respectively.
Algorithm 1
Embedding algorithm

Step 1: The original input video contains n number of frames, convert into binary frame of ‘0’s & ‘1’s

Step 2: Take one frame and convert from RGB to YUV colour format

Step 3: Take luminance component V of one frame and apply DWT we obtain four sub bands.

Step 4: Take HH component and apply PCA.

Step 5: From algorithm 2 obtain the principle component PC and watermark bits are embedded with factor α. The embedding is carried out by equation

\[PC'_i = PC_i + \alpha W \]

where \(PC_i \) represents the principal component matrix of the \(i^{th} \) sub-block.

Step 6: Apply inverse PCA to the sub-blocks of the HH sub-band to obtain the modified wavelet coefficients.

Step 7: Apply inverse DWT we obtain the watermarked luminance component of the frame. The frame is in YUV format then convert into original RGB component.

Extraction algorithm

Step 1: Divide the watermarked video into distinct frames and convert them from RGB to YUV format.

Step 2: Choose the luminance (V) component of a frame and apply the DWT to decompose the V component into the four sub-bands LL, HL, LH, and HH of size N x N.

Step 3: Divide the HH sub-band into \(n \times n \) non overlapping sub-blocks.

Step 4: Apply PCA to each block in the chosen sub band HH by using Algorithm 2.

Step 5: From the HH sub-band, the watermark bits are extracted from the principal components of each sub-block as in equation

\[W'_i = (PC'_i - PC_i)/\alpha \]

where \(W'_i \) is the watermark extracted from the \(i^{th} \) sub block.

Algorithm 2

The HH sub-band coefficients are transformed into a new coordinate set by calculating the principal components of each sub-block (size \(n \times n \)). Calculate vector \(PC_i \) as

\[PC_i = Z x \text{coefficient} \]

where \(PC_i \) represents the principal component matrix of the \(i^{th} \) sub-band.

Where \(Z = (D - \mu)/\sigma \)

Performance Analysis

The performance of the algorithm has been measured in terms of its imperceptibility and robustness against the possible attacks like noise addition, filtering, geometric attacks etc. by using the nature of PSNR & NC.

PSNR:
The Peak-Signal-To-Noise Ratio (PSNR) is used to deviation of the watermarked and attacked frames from the original video frames and is defined as:

\[\text{PSNR} = 10 \log_{10} \left(\frac{255^2}{\text{MSE}} \right) \]

where MSE (mean squared error) between the original and distorted frames (size \(m \times n \)).

Higher values of PSNR indicate more imperceptibility of watermarking. It is expressed in decibels (dB).

NC:
The normalized coefficient (NC) gives a measure of the robustness of watermarking and its peak value is 1.

The proposed algorithm is applied to a sample video. Fig. 3(a) and 3(b) show the original and the watermarked video respectively.

Figure 3. (a) Original Video (b) Watermarked video
Also the following example fig.4 (a) & (b) shows the embedded watermark & extracted binary watermark image respectively.

![Extracted Watermark](image)

Figure 4. (a) Original watermark (b) Extracted binary watermark

The following table 1 shows the value of the data collected from the watermarked video after performing the various attacks. Depending on the value of \(\alpha \) the imperceptibility of the watermark is defined. Minimum value of \(\alpha \) gives high PSNR & value of NC is near to 1. When \(\alpha = 10 \), PSNR= 46.2358

<table>
<thead>
<tr>
<th>ATTACK</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>No attack</td>
<td>0.9665</td>
</tr>
<tr>
<td>Guassian noise</td>
<td>0.9668</td>
</tr>
<tr>
<td>Salt pepper noise</td>
<td>0.9667</td>
</tr>
<tr>
<td>Cropping</td>
<td>0.9664</td>
</tr>
<tr>
<td>Rotation</td>
<td>0.9662</td>
</tr>
<tr>
<td>Median filtering</td>
<td>0.9573</td>
</tr>
<tr>
<td>Contrast adjustment</td>
<td>0.9330</td>
</tr>
<tr>
<td>Histogram equalization</td>
<td>0.8625</td>
</tr>
</tbody>
</table>

The Extracted watermark by various attacks:

![Extracted Watermark](image)
IV. CONCLUSION

The Digital Video Watermarking using DWT-PCA is robust and imperceptible in nature and embedding the binary watermark in the HH sub band helps in increasing the robustness of the embedding procedure without much loss of information and quality of video. As a future work the video frames can be subject to scene change analysis to embed an independent watermark in the sequence of frames forming a scene, and repeating this procedure for all the scenes within a video. The future scope of this is used as Owner Identification, Proof of Ownership, Transaction Tracking, Content Authentication, Broadcast Monitoring, Device Control, Automatic monitoring of copyrighted material on the Web etc.

REFERENCES

[13] A tutorial on Principal Components Analysis Lindsay I Smith February 26, 2002

Authors Profile

S.N.Jadhav received the B.E. degree in electronics engineering from the K.B.P College of Engineering, Satara, Shivaji University, India, in 2011. Currently doing M.E. in (Digital System) in G.S.M.College of Engineering,Pune University, Pune, India. She is working as lecturer in Abhinav Education Society,COET(Polytechnic) from last 2 years. Her research interest includes Image Processing.

Venkat.N.Ghodke is Assistant professor in Electronics and Telecommunication Department of AISSMS’S Institute of information technology Pune. He has worked in various institute as UG and PG guide for image and embedded system design related area. He has published books and papers in journals.