NOC Architecture Comparison with Network Simulator NS2

Neila MOUSSA, Farah Nasri, Rached Tourki
Monastir University

Abstract—The current density integration in integrated circuits can have quite complex SoCs. Problems of interconnections between IP blocks become a critical point that current communication structures are no longer able to solve. These problems are mainly related to the notion of QoS becomes an important concept ensuring maximum reliability. Thus, solutions based NoC offer good prospects to overcome the current limitations of particular topologies Bus. NoC then constitutes a new paradigm for interconnecting SoCs. Through this paper, we tested four NoC topologies in different simulations with NS-2. Through metrics evaluated we were able to identify a selective classification of these topologies.

Network on Chip (NOC) and Network Simulator (NS2)

I. INTRODUCTION

SoCs (System On Chip) become increasingly obsolete share life reduced products "general public". Products must adapt to a large number of standards (Wi-Fi, WLAN, GPRS ...). The main trouble faced by designers of SoCs will provide reliable operation, proper functionality and interactive components. The effectiveness of interconnection has become one of the key points to the success of the design of SoCs. The interconnection networks have been studied for several decades. This is the case of computer networks, telephone networks [1]. However the last ten years we have seen a rapid evolution of the interconnection of systems on chip technology. In particular, the global telecommunications conference in 1992 [2] proposed to replace the bus by networks on chip interconnections based routers or NoCs that are likely to provide effective solutions to complex integration of systems chip [3] [68].

New applications in nanotechnology today require more complex networks and increase their performance. In other words, it is important to introduce the concept of quality of service in networks on chip. In practice, particularly in the industrial context, simulation remains predominantly used as a method of validation of NoCs during the design phase. Even if the simulation time is not negligible and can be very long this limits opportunities for architectural exploration.

In our implementation, the simulation as an evaluation of a set of QoS parameters method remains a strategic choice during the design phase of integrated circuits (eg VHDL programming that addresses the more physical behavior and transmission).

To evaluate the transmission in a network on chip using different topologies must have an idea about all the requirements of feasibility. For that several simulators have been developed and depending on the particularities of each simulation tool, we have chosen the most appropriate simulator. To avoid problems with installation and configuration, we had to choose a stable simulator sufficiently tested and the most suitable for our work environment (simulation data transmission in a network on chip using different topologies). These conditions are verified by NS-2 simulator is extremely flexible. It allows the study of difficult cases to replicate in reality. It provides the flexibility to easily change a plurality of parameters of the network (which is not the case when simulating on a real network). So compared to the experimentation on a real network, the NS-2 tool saves time and money. The latter is certainly the network simulator used most. Due to its popularity, many additions are available to him as 802.11, Evalvid, etc..

In this paper, we first clarify some places NS2 simulator features selected. Subsequently we will describe the steps taken to prepare the simulation environment. Finally, we turn to the simulation portion to define different QoS parameters evaluated and interpret the results.

II- Network Simulator NS2

Like any simulation tool, NS-2 allows the study of the existing design, validation and evaluation of performance and this in the field of network protocols [66] mechanisms. Now, NS-2 has limitations like any simulator. Among which was its inability to simulate large networks and consumer equipment [67] level (processor, memory, large trace files, ...), which makes the simulation time long enough. In fact, working on such a simulator you have to learn its language and script it to have an idea about its inner workings which relies on a certain degree of complexity compared to other simulators. For a beginner researcher, it takes about two years to complete [61] control.
In this study, we sought to characterize the on-chip network in NS-2 through four different topologies. The results are presented as curves, resources (nodes) use random traffic generators. Different statistical distributions are possible to change the temporal distribution of packages, their sizes and locations. The simplest model is an equivalent distribution of packages, which is a network where all resources functions (sending and receiving data), sizes and distributions because it is equivalent to model the operation of communication network and independently of a high processing units that will exploit the network level.

**Bandes passantes totales = 2 \(k^d b \) ; avec \(b = 200 \text{ Mb/s} \)

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>NoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>mesh 2d / anneau / torus / octogone</td>
</tr>
<tr>
<td>Number de nodes</td>
<td>16</td>
</tr>
<tr>
<td>Number de routers</td>
<td>16</td>
</tr>
<tr>
<td>Connexion</td>
<td>router-router / routeur-ressource</td>
</tr>
<tr>
<td>Highest throughput of connexion</td>
<td>200 Mbt/s</td>
</tr>
<tr>
<td>Delay maximal des liens</td>
<td>0.1 ms</td>
</tr>
<tr>
<td>Type of FiFO</td>
<td>FIFO (DropTail)</td>
</tr>
<tr>
<td>FiFO Size</td>
<td>8 paquets</td>
</tr>
<tr>
<td>Data size</td>
<td>64 Bits</td>
</tr>
<tr>
<td>routing Type</td>
<td>Stattique SPF</td>
</tr>
<tr>
<td>Traffic behaviour</td>
<td>exponential traffic generation</td>
</tr>
<tr>
<td>Transmission protocol</td>
<td>UDP</td>
</tr>
</tbody>
</table>

Tab1. Communication parameters for the NoC

c. Description of used scenarios

Exchange of video data

For video traffic, we chose the first resource connected in each topology as a receiver of the data. Each wireless node sends to the base station a movie cut in 1000 bytes. The playback speed of the video is 30 frames per second with 176x144 resolution. The base station is responsible for routing the data to the IPs of the NoC. The duration of our simulation is defined as the total completion of the last video packet sent from the source to the reception early costs.
Simulation time T_s depends on size of cut T packets are divided on the number of frames per second (FPS) video sequence, while it is multiplied by the total number of received image F by adding 1. Time is calculated in seconds. If sending multiple sequences, the value of F will be the largest number of existing images.

Exchange internal data in the NoC

As we already mentioned, NS-2 is a high-level simulator based on event management, why was defined six different behaviors of local traffic circulating in the NoC:

Scenario 1: The first resource sends packets to the rest of the resources.
Scenario 2: The first seven resources send send packets to the last seven.
Scenario 3: Send random between resources.
Scenario 4: The last seven resources send packets to the first seven.
Scenario 5: All the resources to send packets to the first resource.
Scenario 6: Packages are sent to the mobile nodes from the first resource.

The distribution of these different scenarios during the period of the simulation (which depends on T_s) is described in Fig. 1.

Fig.2: Timeline for a process simulation

In our simulations we used two video sequences [63]: "foreman_qcif.yuv" in QCIF(Quarter Common Intermediate Format) format with 176x144 resolution with 400 images and "st_stefan_cif" in CIF format with 352x228 resolution with 90 frames.

I.2.3. The residue network

Triggering event stop "stop" in NS-2 for all existing traffic generators in the simulation will stop the sending packets. But it is possible that there are packages that are en route to their destinations in the network, they are called the "residual network". It is obvious that it is inevitable at the end of each simulation and the simulator will spend time to clean the entire network.

d. Handling code simulation

Before running a simulation, we introduced the parameters in NS-2 through TCL scripts. The parameters consist including: number of node links, topologies, scenarios (different events that will occur), protocols implemented, etc..
Our simulation project is designed in a way to allow extensibility at any time, in fact scenarios and topologies are each implemented in a separate file. TCL what makes our project quite understandable and easy to change (Figure 1 of 2). In addition, different topologies are designed so as to allow easy change of the size which reflects the dynamic. The "main" function makes calls from other codes (Fig 3).

Fig4. Structure of Appeal in the code of the simulation

The outputs of the simulations are text files called trace file. These files are structured inputs. Each entry corresponds to an action performed by a node (send packet, packet rejection, setting queue, receiving a packet).

These files must be processed to calculate the values of bandwidth, loss, delay and jitter to the scenarios in question. For example, to calculate the rate of loss, just count the entries starting with "d" (drop = rejected) and the entries starting with "r" (received = received), thus extracting the loss rate. This processing is performed by the processing language AWK files. Finally, tracing curves is performed by GnuPlot. In addition, the simulator allows the creation of an animation file to visualize the simulation on the NAM GUI.

e. Methodologies for the analysis of the results
Recording simulation and monitoring the queue

This is an integration value in each interval of time, which is defined in the code. For the study, we chose to use a "Record" procedure in which a loop recalculates the values of bandwidth and load queue will be called periodically to each link between resources.

Fig5. Recording Method “procedure Record” data

Therefore, this procedure is used to control how many packets arrive at the destination in every 0.05 seconds and also to identify the rate of incoming packets in the queue for the same time interval.

To monitor the queue we are talking about the "QueueMonitor" class or monitoring the queue which is considered the most important method that facilitates the extraction of simulation results.

Fig6. Example of a monitoring queue resources

According to the example in Figure 3 8 must be set at the beginning, monitoring each link created between the different resources to periodically monitor the status of each of these links according to several parameters. The "QueueMonitor" class NS-2 contains many parameters gives various traffic information and the tendency of each bit and also each packet. These parameters can be identified, for example:

npkts_: Number of packets in the queue.

nlost_: Number Dropped packets from the queue.
pdepartures_: Number of outgoing packets from the queue.

III. CURVES INTERPRETATIONS

In this section, we describe the results of simulations by setting quality of service target. We present these results as follows: for each parameter (bandwidth, delay, jitter and packet loss), we superimpose the curves of each topology studied (Appendix A: Maille
Ring, Torus, Octagonal) to differentiate between them and get away with relevant interpretations.

To ensure the relevance, we adopted for our simulations the following assumptions:

- Maintain the same scenario for all topologies.
- Maintain the same network settings (speed, latency, protocols, applications, ...)
- Maintain the same size for different topologies (16 IPs and 16 routers).

We extract our results through three alternative. Indeed, in a first step, we conducted the evaluation of NoC in the presence of video traffic. To better judge the results, we had to simulate other behaviors such as lack of video traffic and the case of an existing application (MPEG-2) to give more realism to our work.

a. The total bandwidth

![Bandwidth average for the four topologies](image)

Figure 7 curve 12 represents the average bandwidth for the four topologies studied as a function of time. On a first glance, we see that these curves begin to 1s axis which corresponds to the start date of the scenario posed (in Figure 3 2). It can also distinguish between two levels of bandwidth for these curves. In fact, for the Octagon and Torus topologies, stabilization bandwidth occupies the interval [140-145] Mb/s and 130 Mb/s for 2D Maillé. However, it does not exceed 90 Mb/s for the Ring. This stabilization persists despite the increase generated by the scenario 6 in the middle of traffic simulation. Confirming its not influence on the general traffic.

b. Average delay

![Delay for the four topologies](image)

For QoS parameter also called latency period can be seen that all the curves have the same general shape (exponential rise followed by a steady pace). We can clearly distinguish the same grouping as the bandwidth: the Maille 2D Torus the Octagon and that approach at the stabilization value and the Ring that differs enough of them in the negative direction as to usual. Indeed, several milliseconds after the start of the simulation, and the Octagon Torus reach their stabilization with the value 0.45 microseconds, the 2D Maillé 0.5 microseconds and 0.7 microseconds with about ring which favors the first two topologies.

c. Average jitter

![Average Jitter for the four topologies](image)

In Figure 14 March disturbance jitter is clearly visible during the first two seconds, which corresponds to the launch scenarios. The presence of the jitter in the flow is from the abrupt change of the intensity due to
simultaneous traffic transmission trigger data. During the rest of the simulation, jitter is almost zero. For topologies Maille 2D Torus and Octagon curve terminals are close together. While the Ring topology is still different once other.

In the general case, jitter affects applications that transmit packets to a fixed rate and expect to receive the same rate (e.g. Voice, video, etc) and this is our case with the video application.

d. The rate of loss
With a maximum throughput equal to 200 Mb links / s and a maximum equal to 0.1 ms (Table 3 2), we expect to have a good loss rate zero which corresponds to the result obtained for the four topologies. In fact, the maximum delay is measured in Figure 3 13 does not exceed 0.75 microseconds is quite low compared to the maximum delay link is of the order of 0.1 ms. This makes it impossible to fill queues, which suits the requirements of on-chip networks.

e. Load queue
Before starting the interpretation of this curve, we will outline the strategy we adopted to extract it. Indeed, we oversaw all queues put at the entrance of each router. The total number of entries varies from topology to another. We then selected to represent the results of supervision for the intermediate routers traversed by the video packets and their ends (in this case IP1 and BS in Appendix A). But given the congestion caused by the paces taken, we have chosen to present only the load queue of the link between the first router of each topology and resource.

According to this figure (Figure 3 15), we note that the router architecture octagon could pass 24,500 packets during the simulation. For others, they do not exceed 14,500 packets.

To assess the quality of the received video, we used the "EvalVid" tool in order to measure the PSNR. Indeed the curves in Figure 3 16 turns combined with an average value of 34 dB for the first 300 images. According to the equivalence PSNR-MOS, we can judge the quality of the received video is good (Table 2 1).

Through measurements in the presence of video traffic, we can take as a primary conclusion that the topology octagon favors to others. Indeed, it offers better bandwidth with a reasonable time and to increase the number of packets transmitted during the simulation. This topology can withstand a moderate increase in video resolution used. Following this part, to ensure more of our finding, we repeated the simulation by substituting video traffic data traffic.

IV. CONCLUSION

In this paper, we presented around different tools and languages used. In the second part, we specified topologies and scenarios used in our simulations. In the last part, we evaluated the QoS in the network on chip after four topologies (2D Maille, Ring, Octagon and Torus). Through the studied parameters (bandwidth, loss, delay, jitter, and PSNR), we compared these architectures to distinguish the one that offers the best results. The study is based on three simulation phases. Hence we concluded that the octagonal topology is preferable to other architectures.
REFERENCES

