
International Journal of Engineering Trends and Technology- Volume4Issue2- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 186

Implementation of Hamming code using VLSI
Nutan Shep1, Mrs. P.H. Bhagat2

 Department of Electronics & Telecommunication
Dr.B.A.M.U,Aurangabad

Government College of Engineering
Aurangabad (M.S.) ,India-431005

Abstract-This paper tries to explain the implementation of
hamming code using VLSI. In the present world the field of
communication has got many applications, and in every field the
data is encoded at the transmitter and transferred on a
communication channel and received at the receiver after it is
decoded. During the transmission of data it might get corrupted
because of some noise on the channel. So it is necessary for the
receiver to have some function which can detect the error in the
received data. Hamming code is one of such forward error
correcting code which has got many applications. In this paper
the algorithm for hamming code is discussed and then
implementation of it in verilog is done to get the results.
Hamming code is an improvement over parity check method.
Here a code is implemented in verilog in which 4-bit of
information data is transmitted with 3-redundancy bits. In order
to find the value of these redundancy bits a code is written in
verilog which will be simulated in Xillinx 9.1 software. The result
of simulation and test bench waveforms are also shown.

Keywords: VLSI, verilog, xillinx, redundancy, parity, Hamming.

I. INTRODUCTION

One of the major issues in the field of communication is the
secure and error free transmission of data from transmitter to
receiver. And for error free transmission there are number of
technologies. One of the technologies which is used for
correcting forward error is the Hamming code technology.
Around 1947 Richard W. Hamming developed this
technology to detect and correct single bit errors in
transmitted data. In Hamming code error detection and
correction technique to get error free data at destination, we
encrypt information data according to even and odd parity
method before transmission of information at source
end.[3][1]

In telecommunication, Hamming codes are a family of linear
error correcting codes. Hamming codes can detect upto two
and correct upto one bit errors. By contrast the simple parity
code cannot correct errors, and can detect only odd number of
errors. Hamming code are special in that they are perfect
codes, that is they achieve the hightest possible rate for codes
with their block length and minimum distance. Because of the
simplicity of hamming codes, they are widely used in
computer memory. In this context one often uses an extended
hamming code with one extra parity bit. Extended hamming
code achieve a distance of 4, which allows the decoder to
distinguish between the situation in which at most one bit
error occurred and the situation in which two bit error

occurred. In this sense, extended hamming codes are single
error correcting and double-error detecting and often reffered
to as SECDED.[3][4]

In this paper we have written Verilog code for finding error
location and correct the bit which is corrupted. At the
destination, we receive 7-bit of data with 4 redundancy bits.
This received data may be corrupted due to noise. To remove
this noise we find the address of the error bit then correct
them. To find the location of error bit and correct them we
write code in Verilog language.This paper is organized as
follows: the concept of hamming code along with the
application of it, Verilog language, Why Verilog is preffered
over VHDL, Implementation of hamming code, Performance
and experimental results, conclusion and references.

II. HAMMING CODE

Hamming code are the linear block code which are invented
by Richard.W. Hamming. They are an improvement over
simple parity code method. Hamming codes are valid only
when the hamming distance between the bits is less then or
equal to one. By contrast, the simple parity code cannot
correct errors, and can only detect an odd number of errors.
They are the type of binary codes. The idea of hamming
distance is the central concept in coding the error control. The
hamming distance between the two words (of the same size)
is the number of differences between the corresponding
bits.The hamming distance can easily be found if we apply the
Xor operation on the two words and count the number of 1s in
the result. The hamming distance is a value always greater
then zero. If we find the hamming distance between any two
words it will be the result of the Xoring of the two bits. Like
the hamming distance between d (000,011) is 2 because 000
xor 011 is 011(two 1s) and the hamming distance between
d(10101,11110) is 3 because 10101 xor 11110 is 01011(three
1s).[3][7]

Hamming code method works only on two methods(even
parity, odd parity) for generating redundancy bits. The number
of redundancy bits are generated using a formula. The number
of redundancy depends on the number of information data
bits. The formula is:

2^r = D+r+1………………………………………………...(1)

Here, r = number of redundancy bits

 D = number of information data bits

International Journal of Engineering Trends and Technology- Volume4Issue2- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 187

If we calculate the number of redundancy bits for an 4 bit of
information then it comes to be 3 redundancy bit. Redundancy
bits are those extra bits which are required to detect and
correct errors. The redundancy bits are added to the
information bit at the transmitter and removed at the receiver.
The receiver is able to detect the error and correct it because
of the redundancy bits. Hamming codes are used as forward
error correcting codes in the Bluetooth standard, and to protect
data stored in semiconductor memories. Hamming codes are
generally used in computing, telecommunication, and other
applications including data compression, and turbo codes.
They are also used for low cost and low power applications.

III. VERILOG LANGUAGE

Verilog is one fo the two most common Hardware Description
languages(HDL) used by integrated circuits(IC)designers. The
other one is VHDL. Verilog can be used to describe designs
at four levels of abstraction. They are the algorithmic level,
the register transfer level, the gate level and the switch
level.[6]

A. USING VERILOG FOR SIMULATION

The basic structure of Verilog in which all hardware
components and testbenches are described is called a
module. Language constructs, in accordance to Verilog
syntax and semantics form the inside of a module. These
constructs are designed to facilitate the description of
hardware components for simulation, synthesis, and
specification of testbenches to specify test data and
monitor circuit responses. A module that encloses a design’s
description can be described to test the module under design,
in which case it is regarded as the testbench of the design.

Figure 1 Simulation in verilog

The above model consists of a design with a verilog testbench.
Verilog constructs (shown by dotted lines) of the Verilog
model being tested are responsible for the description of its
hardware, while language constructs used in a testbench
are in charge of providing appropriate input data or
applying data stored in a text file to the module being tested,
and analysis or display of its outputs. Simulation output is
generated in the form of a waveform for visual inspection or
data files for record or for machine readability.[5][6]

After a design passes basic the functional validations, it must
be synthesized into a netlist of components of a target library.
The target library is the specification of the hardware
that the design is being synthesized to. Verilog constructs
used in the Verilog description of a design for its verification
or those for timing checks and timing specifications are not
synthesizable. A verilog design that is to be synthesized must
use language constructs that have a clear hardware
correspondence. The figure below shows a block diagram
specifying the synthesis process. Circuit being synthesized
and specification of the target library are the inputs of a
synthesis tool. The outputs of synthesis are a netlist of
components of the target library, and timing specification
and other physical details of the synthesized design. Often
synthesis tools have an option to generate this netlist in
Verilog.

Fig 2 synthesis of a verilog design

When the netlist is provided by the synthesis tool that uses
verilog for the description of the netlist components(Fig 1),
the same testbench prepared for the pre-synthesis simulation
can be used with this gate-level description. This simulation,
which is often regarded as post-synthesis simulation, uses
timing information generated by the synthesis tool and
yields simulation results with detailed timing. Since the
same testbench of the high-level design is applied to the gate-
level description, the resulted waveform or printed data must
be the same.[5][6]

Fig 3 Post synthesis simulation

This can be seen when comparing Fig 1 and 3, while the only
difference is that the post-synthesis simulation includes timing
details.

IV.WHY VERILOG PREFFERED OVER VHDL

We are preffering verilog language over VHDL because of the B. USING VERILOG FOR SYNTHESIS

C. POST-SYNTHESIS SIMULATION

International Journal of Engineering Trends and Technology- Volume4Issue2- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 188

following reasons.

1.Verilog means verification of logic. It is built in C mostly
easy to learn.

2. It gives the simple and effective way of describing the
digital circuits. It is intended for modeling, simulation and
analysis.

3. They are highly portable and self documenting .

4.They provides many descriptive style like structural, register
transfer level and behavioral.

5.Design described in HDL are technology independent, easy
to design and debug, and are usually more readable than
schematics, particularly for large circuits.

6.The way the code is written will greatly effect size and
speed of the synthesized circuit.[5][8]

V. IMPLEMENTATION OF HAMMING CODE

In this section , the design of hamming code encoder and
decoder in Verilog language will be done. Here we have used
the (7,4) algorithm. The algorithm is called a (7, 4) code,
because it requires seven bits to encoded four bits of data. The
extra three bits are parity bits. Each of the three parity bits are
parity for three of the four data bits, and no two parity bits are
for the same three data bits. All of the parity bits are even
parity. Example:

Given: data bits d1, d2, d3, and d4

A (7, 4) Hamming code may define parity bits p1, p2, and p3
as

p1 = d2 + d3 + d (2)

p2 = d1 + d3 + d4 (3)

p3 = d1 + d2 + d4 (4)

There's a fourth equation for a parity bit that may be used in
Hamming codes:

p4 = d1 + d2 + d3 (5)

Valid Hamming codes may use any three of the above four
parity bit definitions. Valid Hamming codes may also place
the parity bits in any location within the block of 7 data and
parity bits. Two Hamming codes with different parity bits or
parity bits in a different bit position are considered equivalent.
They will produce different results, but they are still Hamming
codes. One method for transforming four bits of data into a
seven bit Hamming code word is to use a 4×7 generator
matrix [G].[2][4]

Define d to be the 1×4 vector [d1 d2 d3 d4]

It's possible to create a 4×7 generator matrix [G] such that the
product modulo 2 of d and [G] (d[G]) is the desired 1×7
Hamming code word. Here's how it's done:

Step 1. Represent each data bit with a column vector as
follows:

d1 = ቎
1
0
0
0

቏

d2 = 	 ቎
0
1
0
0

቏

d3 = 		቎
0
0
1
0

቏

d4 = ቎
0
0
0
1

቏

Step 2. Represent each parity bit with a column vector
containing a 1 in the row corresponding to each data bit
included in the computation and a zero in all other rows.
Using the parity bit definitions from the example above:[7][2]

p1 = ቎
0
1
1
1

቏

p2 = ቎
1
0
1
1

቏

p3 = ቎
1
1
1
0

቏

Step 3. Create a generator matrix, [G], by arranging the
column vectors from the previous steps into a 4×7 matrix such
that the columns are ordered to match their corresponding bits
in a code word. To create a generator that produces code
words with the bits ordered p1, p2, p3, d1, d2, d3, d4 (3 parity
bits followed by 4 data bits) use the vectors from the previous
steps and arrange them into the following columns [p1 p2 p3
d1 d2 d3 d4] .[1][2]

The results are following 4×7 generator matrix:

 p1 p2 p3 d1 d2 d3 d4

International Journal of Engineering Trends and Technology- Volume4Issue2- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 189

G = ቎
0 1 1 1 0 0 0
1
1
1

0
1
1

1
0
1

0
0
0

1
0
0

0 0
1 0
0 1

቏

Arranging the columns in any other order will just change the
positions of bits in the code word.

Example:

Encode the data value 1010 using the Hamming code defined
by the matrix G (above).

[1 0 1 0] * ቎
0 1 1 1 0 0 0
1
1
1

0
1
1

1
0
1

0
0
0

1
0
0

0 0
1 0
0 1

቏ =

[1 0 1 1 0 1 0]

So 1010 encodes to 1011010. Equivalent Hamming codes
represented by different generator matrices will produce
different results.

In a world without errors decoding a Hamming code word
would be very easy. Just throw out the parity bits. The
encoding example produced a 7 bit code word. Its parity bits
are 101 and its data bits are 1010. If you receive a 1011010,
just decode it as 1010. But what happens if you receive a code
word with an error and one or more of the parity bits are
wrong?[7][1]

Suppose the Hamming code defined by the matrix G in the
example above is being used and the code word 1011011 is
received. How is that word decoded? The first step is to check
the parity bits to determine if there is an error.

Arithmetically, parity may be checked as follows:

p1 = d2 + d3 + d4 = 0 + 1 + 1 = 0

p2 = d1 + d3 + d4 = 1 + 1 + 1 = 1

p3 = d1 + d2 + d4 = 1 + 0 + 1 = 0

In this case every parity bit is wrong. p1, p2, and p3 should
have been 010, but we received 101.Parity may also be
validated using matrix operations. A 3×7 parity check matrix
[H] may be constructed such that row 1 contains 1s in the
position of the first parity bit and all of the data bits that are
included in its parity calculation. Row 2 contains 1s in the
position of the second parity bit and all of the data bits that are
included in its parity calculation. Row 3 contains 1s in the
position of the third parity bit and all of the data bits that are
included in its parity calculation.

Example:

Using the code from example above, the matrix H may be
defined as follows:

H = ൥
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

൩

Multiplying the 3×7 matrix [H] by a 7×1 matrix representing
the encoded data produces a 3×1 matrix called the

"syndrome". There are two useful proprieties of the syndrome.
If the syndrome is all zeros, the encoded data is error free. If
the syndrome has a non-zero value, flipping the encoded bit
that is in the position of the column in [H] that matches the

syndrome will result in a valid code word.[2]

Example: Using the parity check matrix from the example
above we can correct and verify the code word 1011011.

൥
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

൩ *

⎣
⎢
⎢
⎢
⎢
⎡
1
1
1
1
0
1
0⎦
⎥
⎥
⎥
⎥
⎤

 = ቈ
1
1
1
቉

A column of all 1s is not the column of all 0s, so there is a
parity error. Looking back at the matrix [H], you will see that
the seventh column is all 1s, so the seventh bit is the errored
bit. Changing the seventh bit produces the code word
1011010.

൥
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

൩ *

⎣
⎢
⎢
⎢
⎢
⎡
1
0
1
1
0
1
0⎦
⎥
⎥
⎥
⎥
⎤

 = ቈ
0
0
0
቉

Sure enough 1011010 is a valid code word. As I stated at the
top of this section remove the parity bits to get the encoded
value. In this case 1011011 was likely transmitted as 1011010,
which encodes 1010.

VI. PERFORMANCE AND EXPERIMENTAL RESULT

We have written a code in verilog for hamming[7,4] code. The
code is running succefully. In this code we are initializing a
data of 4 bit and calculating its parity bit by the above general
algorithm. It requires to calculate the parity bit by matrix
multiplication and modulo-2 addition. The parity bit required
for four bit data is three bit. These bits are calculated and the
code is written using case statement.[5][6]

We have done encoding and decoding of the data in the same
code. A variable syndrome is used to decode the data and to
calculate the parity bit. Syndrome is calculated by multiplying
a 3x7 matrix[H] by a 7x1 matrix representing the encoded
data produces a 3x1 matrix, called ‘syndrome’. The syndrome
has two useful properties. First if the syndrome is all zeros,

International Journal of Engineering Trends and Technology- Volume4Issue2- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 190

the encoded data is error free. But if the syndrome has a non-
zero value, then flip the encoded bit that is in the position of
the column in [H] that matches the syndrome will result in a
valid code word.[6]

Before viewing the test bench waveform we will show the
input/output ports of hamming encoder and decoder.

TABLE 1

INPUT/OUTPUT PORTS

Signal Description

Data_in Input data

Edc_in Calculates the parity bit

Data_out Outputs data

error It is 0 when syndrome is 0

syndrome Connection between
hardware elements

The test bench waveform below shows that we have given a
input data of 8 bit.The data is 01010101 i.e 8’h55 in
hexadecimal.The figure below shows only the value of the
data.

Fig 4 Test bench waveform

The figure below shows the in detail bits of input data. Like
the 8th bit contains 0,7th bit contains 1,6th bit contains 0 and so
on.

Fig 5 Input data

In the next figure we are giving the bits to edc_in variable
which helps in calculating the parity bits. The variable edc_in
contains 1010 i.e 4’hA in hexadecimal.

Fig 6 Given output data

The figure below gives the simulation result of the test bench
waveform.I shows that when we send the input data 8’h55 to
the input variable the syndrome calculates the parity bit and
transmits the data bit and in the result we get output data bit as
8’h55.

Fig 7 simulation result

VII. CONCLUSION

Thus we have tried to implement hamming code in verilog
language and shown the output results. Hamming codes have
improved the way of communication by detecting and
correcting errors. We have also given the reason that why we
are preffering verilog language over VHDL.

ACKNOWLEDGEMENT
I gratefully acknowledge all the people who assisted me during this work. It is
a pleaser to thank to all the members who encouraged me for this journal
presentation, whose words are great encouragement to me.

 I enjoyed and learnt many more things from this event. Finally, I will
welcome all the suggestions from anybody which will definitely nice one. If
you found any mistake or error please suggest for the same.

Finally, I gratefully acknowledge to all Institute members because of them I
got inspiration to write and present this journal in this event.

REFERENCES
[1] Data communication and networking, Behrouz A. Forouzan, 4th edition,
 Tata McGrawHill publication.
[2] http://hamming (7,4) code Discussion and implementation.
[3] Hardware implementation of a single bit error code correction by const-
 antion IANA, Gheorghe SERBAN, Ion TUTANESCU, Petre ANGHE-
 -LESCU.
[4] Information Theory Coding and Cryptography by Ranjan Bose.
[5] http://www.xillinx.com/training/xillinx-training- courses.pdf.
[6] Verilog HDL:A guide to digital design and synthesis,second edition by
 Sameer Palnitkar.
[7] Hamming W.Richard. Coding and information and theory, Prentice-Hall
 chapter 3.
[8] ISE 9.1 Quick Start Tutorial, available at http:/ www.xillinx.com/itp/
 xillinx9/books/docs/qst/q.

