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Abstract—Development of artificial neural network (ANN) for 
prediction of power consumption in the turning of ferrous and 
nonferrous materials has been the subject of the present paper. 
ANN was trained through field data obtained on the basis of 
random plan of experimentation. Various influential machining 
field parameters were taken into consideration.  The inputs were 
machine operator, work piece, cutting tool, cutting process 
parameters, machine specification and the machining field 
environmental parameters while the output was power consumed 
during the machining of ferrous and nonferrous materials.  It 
was illustrated that a multilayer perception neural network could 
efficiently model the power consumption as the response of the 
network, with a minimum error. The performance of the trained 
network was verified by further observations.6-5-1 topology has 
been used for getting simulated result. The results of ANN were 
compared with the results of conventional turning (CT) 
observations. 
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I. INTRODUCTION 
Artificial neural networks (ANN) have already been applied to 
various aspects of machining processes, such as optimization 
of machining parameters [5]-[6], prediction of cutting load 
[7]-[8], surface roughness modeling[8]- [14], tool wear 
detection [15]-[16] and estimation of cutting tool stress [17]. 
Finesa and Agah [18], and El-Sonbaty et al [18] used neural 
network for positioning error compensation. Hao used ANN 
and genetic algorithm for modeling the thermal error in 
turning. This literature survey indicates that responses in 
cutting operations are well apt to be modeled by neural 
networks. To the knowledge of the authors, no work can be 
mentioned to have been done on the application of neural 
networks to convectional turning (CT). The authors have 
recently developed an ANN model for prediction of power 
consumption in the turning of ferrous and nonferrous material 
in CT. This work has been extended to include S.S.304,      
EN1A and EN8 as ferrous material and Aluminium 6063 and 
brass as a nonferrous material for the present study.  
ANNs offer a computational approach that is quite different 
from conventional digital computation. Digital computers 

operate sequentially and can do arithmetic computation 
extremely fast. Biological neurons in the human brain are 
extremely slow devices and are capable of performing a 
tremendous amount of computation tasks necessary to do 
everyday complex tasks, commonsense reasoning, and dealing 
with fuzzy situations. The underlining reason is that, unlike a 
conventional computer, the brain contains a huge number of 
neurons, information processing elements of the biological 
nervous system, acting in parallel. ANNs are thus a parallel, 
distributed information processing structure consisting of 
processing elements interconnected via unidirectional signal 
channels called connection weights. Although modeled after 
biological neurons, ANNs are much simplified and bear only 
superficial resemblance. Some of the major attributes of 
ANNs are: (a) they can learn from examples and generalize 
well on unseen data, and (b) are able to deal with situation 
where the input data are erroneous, incomplete, or fuzzy. 
 

II. PROCESS VARIABLES AFFECTING THE POWER CONSUMPTION  
 

A. List of Variables under consideration 
The list of various parameters is as shown in table 1. 
 

B. Reduction of Variables by Buckingham’s Pi Therom 
 

According to the theories of engineering experimentation by 
H. Schenck Jr. the choice of primary dimensions requires at 
least three primaries, but the analyst is free to choose any 
reasonable set he wishes, the only requirement being that his 
variables must be expressible in his system. There is really 
nothing basis or fundamental about the primary dimensions. 
For this case ,the variables are expressed in mass (M), length 
(L) , time  ( T), temperature ( θ ) and angle ( Δ).The final 
dimensionless pi term id as shown in table 2. 
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TABLE I 
LIST OF PROCESS VARIABLES 

S.
N. 

Process variables affecting the turning process 
Description  Sym

bol 
Dimensions  

1 Anthropometric dimensions ratio 
of the operator. 

An M0 L0 T0 θ0 Δ0 

2 Weight of the operator. Wp M1 L0 T0 θ0 Δ0 
3 Age of the operator. AG

P M0 L0 T1 θ0 Δ0 

4 Experience  EX M0 L0 T1 θ0 Δ0 
5 Skill rating  SK M0 L0 T0 θ0 Δ0 
6 Educational qualifications  ED

U M0 L0 T0 θ0 Δ0 

7 Psychological  Distress  PS M0 L0 T0 θ0 Δ0 
8 Systolic Blood pressure SBP M0 L0T1 θ0 Δ0 
9 Diastolic  Blood pressure    DBP M0 L0 T0 θ0 Δ0 
10 Blood Sugar Level during 

Working  
BSG M1 L-3 T0 θ0 Δ0 

11 Cutting Tool angles ratio.   CT
AR M0 L0 T0 θ0 Δ0 

12 Tool nose radius R M0 L1 T0 θ0 Δ0 
13 Tool overhang length Lo M0 L1 T0 θ0 Δ0 
14 Approach angle α M0 L0 T0 θ1 Δ0 
15 Setting angle  β M0 L0 T0 θ1 Δ0 
16  Single point cutting tool 

Hardness  
BH
N M0 L0 T0 θ0 Δ0 

17 Lip or Nose  angle of tool LP M0 L0 T0 θ1 Δ0 
18 Wedge angle  WG M0 L0 T0 θ1 Δ0 
19 Shank Length  LS M0 L1 T0 θ0 Δ0 
20 Total length of the tool  LT M0 L1 T0 θ0 Δ0 
21 Tool shank width   SB M0 L1 T0 θ0 Δ0 
22 Tool shank Height  SH M0 L1 T0 θ0 Δ0 
23 Work piece hardness  BH

NW M0 L0 T0 θ0 Δ0 

24 Weight of the raw work piece. W M1 L0 T0 θ0 Δ0 
25 Ultimate Shear  stress of the 

workpiece material 
σsut  M1 L-1 T-2 θ0 

Δ0 
26 Density of the workpiece material  DST M1 L-3 T0 θ0 Δ0 
27 Length of the raw workpiece  LR M0 L1 T0 θ0 Δ0 
28 Diameter of the raw workpiece  DR M0 L1 T0 θ0 Δ0 
29 Cutting Speed  VC M0 L1 T-1 θ0 Δ0 
30 Feed  f  M0 L1 T0 θ0 Δ0 
31 Depth of cut  D   M0 L1 T0 θ0 Δ0 
32 Cutting force  FC M1 L1 T-2 θ0 Δ0 
33 Tangential Force. FT M1 L1 T-2 θ0 Δ0 
34 Spindle revolution  N M0 L0 T-1 θ0 Δ0 
35 Machine Specification ratio MS

P M0 L0 T0 θ0 Δ0 

36 Power of the Machine motor HP M1 L2 T-3 θ0 Δ0 
37 Weight of the machine Wm M1 L0 T0 θ0 Δ0 
38 Age of the machine  AG

M M0 L0 T1 θ0 Δ0 

39 Atmospheric Humidity  Φ M0 L0 T0 θ0 Δ0 
40 Atmospheric Temperature  DT M0 L0 T0 θ0 Δ1 
41 Air Flow Vf M0 L1T-1 θ0 Δ0 
42 Light Intensity LU

X M1 L0 T-4 θ0 Δ0 

43 Sound level  DB M0 L0 T0 θ0 Δ0 
44 Power consumption   PC   M1L2 T-3 θ0 Δ0 

 
 

C. Experimental plan  

For multifactor experiments two types of plans viz. classical 
plan or full factorial and factorial plan are available, in this 
experimentation conventional plan of experimentation is 
recommended. In all data was collected from total 585 
experiments of five material S.S.304, EN1A, EN8, Al 6063 
and Brass. The experimental set up is as shown in figure 1. 

III. MODEL FORMULATION BY ARTIFICIAL NEURAL NETWORK  
Artificial neural network (ANN) takes their name from the 
network of nerve cells in the brain. Recently, ANN has been 
found to be an important technique for classification and 
optimization problem. Artificial Neural Networks (ANN) has 
emerged as a powerful learning technique to perform complex 
tasks in highly nonlinear dynamic environments. Some of the 
prime advantages of using ANN models are their ability to 
learn based on optimization of an appropriate error function 
and their excellent performance for approximation of 
nonlinear function.  

  
Fig. 1  Experimental setup for the turning operation  

TABLE III 
LIST OF DIMENSIONLESS PI TERM FORMULATED  

S.
N 

Pi 
ter
m 

Dimensionless ratio Nature of 
basic physical 
quantities  

1 π1 
An*SBP*SK*Ag*Wp *SPO2 / 
DBP*PS*EDU*EX*BSG*D3 

Machine 
operator  data 

2 π2 
AR * r * β * BHNT * LT*LP*LS  
/  α  * LO* SW * SH * WG 

Single point 
cutting tool 

3 π3 
BHNW  *  W raw* LR * τ  /  D *   
FC * DST * DR 

Work piece 
material 

4 π4 
f  * FT * N * Tempwp* VB Tool   / 
VB Machine * FC*VC 

Cutting 
process 
parameters 

5 π5 SP * PHP * Wm/c /   AGM* FC2 Lathe Machine 

6 π6 
HUM*DTO *Vf *DB*VC*FC/  
LUX*D3 

Environmental 
data 

7 π  D1 PC/ FC * V 
 

Power 
Consumption 
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A. Need of ANN  
      The ANN is capable of performing nonlinear mapping 
between the input and output space due to its large parallel 
interconnection between different layers and the nonlinear 
processing characteristics. An artificial neuron basically 
consists of a computing element that performs the weighted 
sum of the input signal and the connecting weight. The sum is 
added with the bias or threshold and the resultant signal is 
then passed through a nonlinear function of sigmoid or 
hyperbolic tangent type. Each neuron is associated with three 
parameters whose learning can be adjusted; these are the 
connecting weights, the bias and the slope of the nonlinear 
function. For the structural point of view a NN may be single 
layer or it may be multilayer. In multilayer structure, there is 
one or many artificial neurons in each layer and for a practical 
case there may be a number of layers. Each neuron of the one 
layer is connected to each and every neuron of the next 
layer.The functional-link ANN is another type of single layer 
NN. This type of network the input data is allowed to pass 
through a functional expansion block where the input data are 
on linearly mapped to more number of points. The basic ANN 
model is as shown in figure 2.  This is achieved by using 
trigonometric functions, tensor products or power terms of the 
input. The output of the functional expansion is then passed 
through a single neuron. The learning of the NN may be 
supervised in the presence of the desired signal or it may be 
unsupervised when the desired signal is not accessible. Here 
in 
this paper ANN is supervised learning. Rumelhart developed 
the Back propagation (BP) algorithm, which is central to 
much work on supervised learning in MLP. A feed-forward 
structure with input, output, hidden layers and nonlinear 
sigmoid functions are used in this type of network. In recent 
years many different types of learning algorithm using the 
incremental back-propagation algorithm, evolutionary 
learning using the nearest neighbour MLP and a fast learning 
algorithm based on the layer-by-layer optimization procedure. 
Intricate behaviour of output parameters can be studied using 
simulation techniques. In fact an approximate behaviour can 
be explained using regression analysis. The true intricacies 
take the shape of non-linear behaviour. Regression fails to 
explain any such deviation from assumed relationship. 
Multiplicity of behaviour cannot be combined in regression 
because it generates complicated relationship, which may not 
be resolved mathematically. In order to understand the fine 
behaviour of output parameters, simulation using ANN was 
the best proposition. The neural network used in this case was 
predictive in nature. It was range bound for all input factors. 
In neural network terminology total Input output cells were 7. 
A network with five hidden layers was reasonable to simulate. 
Mathematically both these numbers – number of layers and 
cells are justified in present day theories of neural network. 
All the input parameters were scaled down between zero and 
one using their maximum and minimum values. This is the 
requirement to make the data flow on neural network. The 
values of synaptic weights and thresholds were chosen 

randomly between zero and one. The data was iterated 
forward and backward to achieve accuracy at sixth place of 
decimal. The weights and threshold were corrected in every 
iteration. The values of weights and thresholds obtained at the 
end were matured values and indicated the end of learning 
process of the network. Thus it was very easy to answer what 
will be the output parameter if input factors are known. A 
separate program was written for this prediction. This 
program simulates the structure of entire network using final 
values of weights and thresholds. It carries out the single 
iteration using scaled values of input factors to generate the 
scaled values of output parameter. This scaled value is further 
translated to its physical value by reverse scaling calculations. 
In this way once the network has gone through the learning 
process, it is capable of predicting output parameters Viz. 
Value addition and human energy input immediately. The 
complex relationship in manipulation of the output is not truly 
known but the numerical results are obtainable. Moreover 
these results are least affected by discrepant error.  Separate 
network was not required for situation after improvement but 
it was essential to train the network about changed 
relationship between input output parameters after 
incorporating improvements in assembly system. Both the 
situations were truly viewed and difference in behaviour could 
be easily computed the network developed by ANN for all 
three models are as shown if figure 3,5 and 7 and the 
comparison between actual and the ANN outputs are as shown 
in figure 4,6 and 8.   The true power and advantage of neural 
networks lies in their ability to represent both linear and non-
linear relationships and in their ability to learn these 
relationships directly from the data being modelled. 
Traditional linear models are simply inadequate when it 
comes to modeling data that contains non-linear 
characteristics. Neural networks are designed to work with 
patterns - they can be classified as pattern classifiers or pattern 
associates. 
 
 
 
                                                                                        Target  
 
 
 
 
Inputs                                                            
 
                                                                                Output 
                                                
 
 
 
                                                                               Adjust 
                                                                              Weights 
 

 
Fig-2: Basic ANN Model 

 

B. Formulation of  ANN   Model  

Neural Network 
including connections 

(Called Weights) 
between neurons 
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The optimum value of parameters used to train the ANN 
network is as shown in table 3.The ANN  models are as given 
by equation 1,2 and 3. 
 

TABLE IIIII 
OPTIMUM PARAMETERS USED TO TRAIN THE ANN NETWORK  

S.N. Parameters  Optimum value  
1 Number of hidden layer 1 
2 Learning factor 0.1 
3 Transfer function used Sigmoid  
4 Number of hidden neurons 5 
5 Number of epochs 1000 
6 Momentum factor 0.5 

 
Model 1: For Turning of Ferrous and nonferrous 
materials  
 
 Correlation Coefficient =0.9161179771956546 
 Root Mean Square =0.157733431267774 
 Reliability = 

87.80989011%
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Model 2 : For turning of Ferrous Material 

 
 Correlation Coefficient =0.90789834590931 
 Root Mean Square =0.146175451030486 
 Reliability =88.87272727 % 

 

 
 

Fig-3: 6-5-1 ANN Model for turning of All Material data. 
 

 
Fig-4: Comparison  between Actual and ANN model for All material. 
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Fig-5: 6-5-1 ANN Model for turning of ferrous Material data. 
 
 
 
 

 
Fig-6: Comparison  between Actual and ANN model for ferrous material. 

 
 
Model 3 : For turning of Nonferrous Material 

 
 Correlation Coefficient =0.917322928741176 

 Root Mean Square =0.130248431675137 
 Reliability = 90.24166667% 
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Fig-7: 6-5-1 ANN Model for turning of  nonferrous  Material data. 
 
 
 

 
Fig8: Comparison between Actual and ANN model for nonferrous material. 

IV. CONCLUSIONS 
The power consumption for turning of ferrous and nonferrous 
maternal was modelled by artificial neural network, in the 
present study. The following characteristics of the network 
and training data could yield sufficiently accurate results: 
Multilayer perception was used for this purpose. The network 
was trained with field data carried out on the  basis of random 
plan of experimentation and observation .The trained network 
was verified with separate observed  data. Totally, 546 ( 330 
for ferrous and 216 for nonferrous material ) observations 
were taken for training and testing the network. Three-layered 
back propagation network was proposed for modelling the 
power consumption. Sigmoid function and one hidden layer 
accommodating five neurons could converge to acceptable 
output accuracy after 950 epochs. The test of the trained 
networks showed good agreement existing between their 
predictions and the experimental results.  
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