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Abstract: We study the performance of TCP WestwoodNR (TCP-

WNR), a TCP protocol controls the window using end-to-end 

bandwidth estimation. This Bandwidth Estimation continuously 

estimates, at the TCP sender, the packet rate of the connection 

by monitoring the ACK reception rate. The estimated connection 

rate is then used to compute congestion window and slow start 

threshold settings after a packet loss occurred. Resetting the 

window to match available bandwidth makes TCP-WNR more 

robust to Random loss as well as in Congestion. Thus Rather 

than to react unnecessary window reduction after every packet 

lost, TCP-WNR uses this bandwidth estimation to compute 

congestion window and slow start threshold. These often cause 

conventional TCP to overreact, leading to unnecessary window 

reduction. Experimental studies of TCP-WNR show significant 

improvements in throughput performance over Reno and SACK, 

particularly in wired networks. Performance Results are shown 

that TCP-WNR is the best TCP protocol for link errors as well as 

congested networks. Performance results also shown that with 

High Error Rate Environment, TCP-WNR gives the highest 

throughput among all other TCPs. Analytic results are validated 

against simulation results. 
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I. INTRODUCTION 

TCP is a connection-oriented, end-to-end reliable protocol 

designed to fit into a layered hierarchy of protocols which 

support multi-network applications. The TCP provides for 

reliable inter-process communication between pairs of 

processes in host computers attached to distinct but 

interconnected computer communication networks. Very few 

assumptions are made as to the reliability of the 

communication protocols below the TCP layer. TCP assumes 
it can obtain a simple, potentially unreliable datagram service 

from the lower level protocols. In principle, the TCP should 

be able to operate above a wide spectrum of communication 

systems ranging from hard-wired connections to packet-

switched or circuit-switched networks [21].  

The primary purpose of the TCP is to provide reliable, 

securable logical circuit or connection service between pairs 

of processes. To provide this service on top of a less reliable 

internet communication system requires basic TCP facilities 

in the following areas:  

 

 Basic Data Transfer 

 Reliability 

 Flow Control 

 Multiplexing 

 Connection 

 Precedence and Security 

II. TCP VARIANTS 

TCP congestion control involves slow start and congestion 

avoidance phases. In order to improve the performance, 
several mitigation techniques have been suggested over 

standard TCP versions like NewReno and SACK TCP. The 

proactive schemes like, TCP Westwood and TCP 

WestwoodNR intend to improve flow control and avoid 

packet losses from estimation of certain network parameters. 

By improving the basic TCP Tahoe, Other versions Of TCPs 

are invented. Tahoe TCP consist of slow start, congestion 

avoidance and fast retransmission algorithms. But the problem 

with TCP Tahoe is that every time a packet is lost it waits for 

a timeout. TCP Reno adds “fast recovery” to the Tahoe TCP 

as additional feature. When a first packet lost is happened, it 

cuts its cwnd by half. But the problem with TCP Reno is in a 
single window whenever there is a multiple packet loss, it 

behaves same like TCP Tahoe. TCP NewReno is a 

modification made in TCP Reno, where TCP sender 

retransmit the packet either on reception of  three dupacks or 

expiration of retransmission timer. In New-Reno, partial acks 

do not take TCP out of Fast Recovery. Instead, partial acks 

received during Fast Recovery are treated as an indication that 

the packet immediately following the acknowledged packet in 

the sequence space has been lost, and should be retransmitted. 

Thus, when multiple packets are lost from a single window of 

data, New-Reno can recover without a retransmission timeout, 
New-Reno remains in Fast Recovery until all of the data 

outstanding when Fast Recovery was initiated will get 

acknowledged. But the problem with TCP Newreno is that 

when large amount of packets dropped from the window of 

data, TCP data send retransmit time will ultimate expire. TCP 

Sack option follows the format in the SACK option field 

contains a number of SACK blocks, where each SACK block 

reports a non-contiguous set of data that has been received and 

queued. But the problem with TCP Sack is that currently 

selective acknowledgments are not provided by the receiver. 
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TCP Westwood & TCP WestwoodNR introduces ”faster” 

recovery to avoid over-shrinking cwnd after three duplicate 

ACKs by taking into account the end-to- end estimation of the 

bandwidth available to TCP.TCP Westwood uses the 

badwidth estimate to set the cwnd & ssthresh after a 

congestion episode. Also it uses the same features with TCP 

Reno. But the problem with TCP Westwood is that it omits 

the router’s buffer size. Therefore, modifications done to 

implement TCP WestwoodNR are comparable to the ones 

implemented in the transition from TCP Reno to TCP 

Newreno. TCP-WNR was aimed to improve performance 

under random or sporadic losses. This version was tested 
through simulation and showed considerable gain in terms of 

throughput in almost all scenarios. 

III. OVERVIEW OF TCP WestwoodNR 

In TCP WestwoodNR the sender continuously computes 

the connection Bandwidth Estimate (BWE) which is defined 

as the share of bottleneck bandwidth used by the connection. 

Thus, BWE is equal to the rate at which data is delivered to 

the TCP receiver. The estimate is based on the rate at which 

ACKs are received and on their payload. After a packet loss 

indication, (i.e, reception of 3 duplicate ACKs, or timeout 

expiration). The sender resets the congestion window and the 
slow start threshold based on BWE. More precisely, 

cwin=BWE x RTT. 

To understand the rationale of TCP-WNR, note that BWE 

varies from flow to flow sharing the same bottleneck; it 

corresponds to the rate actually achieved by each 

INDIVIDUAL flow. Thus, it is a FEASIBLE (i.e. achievable) 

rate by definition. Consequently, the collection of all the BWE 

rates, as estimated by the connections sharing the same 

bottleneck, is a FEASIBLE set. When the bottleneck becomes 

saturated and packets are dropped, TCP-WNR selects a set of 

congestion windows that correspond exactly to the measured 

BWE rates and thus reproduce the current individual 
throughputs. The solution is feasible, but it is not guaranteed 

per se to be “fair share.” An additional property of this 

scheme, described in Section III, drives the rates to the same 

equilibrium point and makes it “fair share” under uniform 

propagation delays and single bottleneck assumptions. 

Another important element of this procedure is the RTT 

estimation. RTT is required to compute the window that 

supports the estimated rate BWE. Ideally, the RTT should be 

measured when the bottleneck is empty. In practice, it is set 

equal to the overall minimum round trip delay (RTTmin) 

measured so far on that connection (based on continuous 
monitoring of ACK RTTs)[15]. 

 

A. Setting cwin and ssthresh in TCP-WNR 

Further details regarding bandwidth estimation are 

provided in following sections. For now, let us assume that a 

sender has determined the connection bandwidth estimate 

(BWE), and let us describe in this section how BWE is used to 

properly set cwin and ssthresh after a packet loss indication. 

First, we note that in TCP-WNR, congestion window 

increments during slow start and congestion avoidance remain 

the same as in Reno, , that is they are exponential and linear, 

respectively. A packet loss is indicated by (a) the reception of 

3 DUPACKs, or (b) a coarse timeout expiration. In case the 

loss indication is 3 DUPACKs, TCP-WNR sets cwin and 

ssthresh as follows: 

if (3 DUPACKs are received) 

ssthresh = (BWE * RTTmin) / seg_size; 

if (cwin > ssthresh) /* congestion avoid. */ 

cwin = ssthresh; 

endif 
endif 

In the pseudo-code, seg_size identifies the length of a TCP 

segment in bits. Note that the reception of n DUPACKs is 

followed by the retransmission of the missing segment, as in 

the standard Fast Retransmit implemented by TCP Reno. 

Also, the window growth after the cwin is reset to ssthresh 

follows the rules established in the Fast Retransmit  algorithm 

(i.e. cwin grows by one for each further ACK, and is reset to 

ssthresh after the first ACK acknowledging new data). During 

the congestion avoidance phase we are probing for extra 

available bandwidth. Therefore, when n DUPACKs are 
received, it means that we have hit the network capacity (or 

that, in the case of wireless links, one or more segments were 

dropped due to sporadic losses). Thus, the slow start threshold 

is set equal to the window capable of producing the measured 

rate BWE when the bottleneck buffer is empty (namely, 

BWE*RTTmin). The congestion window is set equal to the 

ssthresh and the congestion avoidance phase is entered again 

to gently probe for new available bandwidth. Note that after 

ssthresh has been set, the congestion window is set equal to 

the slow start threshold only if cwin > ssthresh. It is possible 

that the current cwin may be below threshold. This occurs 

after time-out for example, when the window is dropped to 1 
as discussed in the following section. During slow start, cwin 

still features an exponential increase as in the current 

implementation of TCP Reno[15]. 

In case a packet loss is indicated by timeout expiration, 

cwin and ssthresh are set as follows: 

if (coarse timeout expires) 

cwin = 1; 

ssthresh = (BWE * RTTmin) / seg_size; 

if (ssthresh < 2) 

ssthresh = 2; 

endif; 
endif 

B. Bandwidth Estimation 

The TCP-WNR sender uses ACKs to estimate BWE. More 

precisely, the sender uses the following information: (1) the 

ACK arrival times and, (2) the increment of data delivered to 

the destination. Let assume that an ACK is received at the 

source at time tk, notifying that dk bytes have been received at 

the TCP receiver. We can measure the sample bandwidth used 

by that connection as bk=dk/(tk–tk-1), where tk-1 is the time the 
previous ACK was received. Letting Δtk=tk–tk-1, then 
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bk=dk/Δtk. Since congestion occurs whenever the low-

frequency input traffic rate exceeds the link capacity, we 

employ a low pass filter to average sampled measurements 

and to obtain the low-frequency components of the available 

bandwidth. More precisely, we use the following discrete 

approximation of the low pass filter due to Tustin. 

Let bk be the bandwidth sample, and kb̂ the filtered 

continuous first order low-pass filter using the Tustin estimate 

of the bandwidth at time tk. Let αk be the time-varying 

exponential filter coefficient at tk. The TCP-WNR filter is then 

given by 
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And 1/τ is the filter cut-off frequency. 

Notice the coefficients k  depend on kt  to properly reflect 

the variable inter-arrival times.[15] 

A number of considerations must be taken into account 

while interpreting the information that a returning ACK 

carries regarding delivery of segments to the destination. Two 
of these considerations are: 

1. An ACK i received by the source  implies that a 

transmitted packet was delivered to the destination. A 

DUPACK also implies that a transmitted packet was 

delivered, triggering the transmission by the receiver of the 

DUPACK. Thus, DUPACKs are considered in estimating 

bandwidth. 

2. TCP ACKS can be “delayed,” i.e., receivers wait for a 

second packet before sending an ACK, until 200 ms elapse in 

which case an ACK is sent without waiting. Delayed ACKs 

are also accounted for by our scheme.  

These items are included in our implementation of TCP-WNR 
under Linux[15]. 

IV. PERFORMANCE ANALYSIS OF TCP WestwoodNR 

In this section a set of results of performance comparison 

between TCP WestwoodNR and TCPs Reno, Sack and 

Westwood. In order to be aware of the perturbations and 

interactions of TCP WestwoodNR, we analyse the impact on 

Throughput by Two factors (error rate, bottleneck 

bandwidth).Throughput is a common metric of TCP 

Performance. All simulations presented in this paper were run 

using the Network Simulator version 2.35.  

 

A. Impact of Error Rate on Throughput 

We create a Link to Link with one source, one router and 

one destination. We give Duplex Link between source to 

router and router to destination with 5mb of Bandwidth and 0 

second of Delay. Define TCP Agent like Reno, SACK, 

WestwoodNR with source and give the flow between source 

to destination. Start All simulation at 0.2 second and stop 

simulation at 50 second. Total Simulation Time is also 50 

second. Following Existing Topology is as under drawn 

 

Source Router Destination

5 Mb 5 Mb

 

Fig.1 End to End Connection Network 

 

We Analyzed the Throughput of Different TCP Agent like 

Reno, SACK, WestwoodNR with different Error Rates like 

0.001, 0.01, and 0.1 and we see that with Increasing Error 

Rate, The Throughput Of TCP WestwoodNR increases 

compare to other TCP Agent. 

 

 

Fig.1.1(a) Throughput Of TCPs with 0.001 Error Rate 

 

As From Fig. 1.1(a),(b),(c) and From Table-I we can see 

from the simulation that with small Error Rate of 0.001, The 

Throughput Of Reno much Higher than Other TCPs. Like 

wise As we increase the Error Rate with 0.01 and then much 

increase as 0.1 We can clearly see that Our Approach towards 

throughput of TCP WestwoodNR is also increase with 

increasing the Error Rate. 

Thus it is clearly seen that with Random Drops in Topology 

of the Network, TCP WestwoodNR is more useful protocol to 
use in it. Thus Throughput Of TCP WestwoodNR compare 

with other TCPs  is increasing with increasing Error Rate.  
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Fig.1.1(b) Throughput Of TCPs with 0.01 Error Rate 

 

 
 

Fig.1.1(c) Throughput Of TCPs with 0.1 Error Rate 

Let us we conclude this result in Table: 

Table-I 

Error 

Rate 

Average 

Throughput 

Of Reno in 

Mbps 

Average 

Throughput 

Of Sack in 

Mbps 

Average 

Throughput Of 

WestwoodNR in 

Mbps 

0.001 2.4 1.22 1.37 

0.01 1.75 1.59 1.60 

0.1 0.9 0.4 1.41 

B. Impact of Bottleneck Bandwidth on Throughput 

We first create three sources like source-1, source-2 and 

source-3. Then we connect these sources with one router and 

finally it connects to the destination. We give Duplex Link 

between source-1 to router, source-2 to router, and source-3 to 

router with 5mb of Bandwidth and 0 second of Delay. Then 

we give Duplex Link between router to destination with 2mb 

of Bandwidth and 0 second of Delay. Thus clearly we have 

given 2mb of Bottleneck in this Topology. Define TCP 

Agent/Sack1 with source-1 and give the flow between source-
1 to destination. Define TCP Agent/Westwood with source-2 

and give the flow between source-2 to destination. Define 

TCP Agent/WestwoodNR with source-3 and give the flow 

between source-3 to destination. Start All simulation at 0.2 

second and stop simulation at 50 second. Total Simulation 

Time is also 50 second. Following Basic Topology is as under 

drawn. 

 

Router Destination
5 Mb

2 Mb

Source-1

Source-3

5 Mb

5 Mb

Source-2

 

Fig.2 Bottleneck Network 

 

We Analyzed the Throughput of Different TCP Agent like 

SACK, Westwood, and WestwoodNR with Bottleneck 

Bandwidth of 2 Mbps. 

Let us Analyzed From Firg.2.1(a) and (b) We have clearly 

seen that with a Bottleneck Bandwidth Of 2 Mpbs and without 

Error Rate given TCP WestwoodNR has the Highest Average 

Throughput of 0.72 Mbps, TCP Westwood has Average 

Throughput of 0.68 Mpbs and TCP Sack has lowest Average 

Throughput of 0.58 Mbps. Also from Fig 2.1(b) We have 

clearly seen that As We increase the Error Rate in Bottleneck 
TCP WestwoodNR has much better Average Throughput 

compare with some other TCPs. 
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Fig.2.1 (a) Throughput Of TCPs with Bottleneck Bandwidth without Error 

Rate 

 

 

 
 

Fig.2.1(b) Throughput Of TCPs with Bottleneck Bandwidth with 0.1 Error 

Rate 

 

C. Impact Of Bottleneck Bandwidth on Throughput with UDP 

Traffic 

We first create a two sources like source-1 and source-2. 

Then we connect these sources with one router and finally it 

connects to the Destination. We give Duplex Link between 

source-1 to router with 1mb of Bandwidth and 0 second of 

Delay and source-2 to router with 10mb of Bandwidth and 0 

second of Delay. Then we give Duplex Link between router to 
destination with 5mb of Bandwidth and 0 second of Delay. 

Thus clearly we have given 5mb of Bottleneck in this 

Topology. Define UDP Agent with source-1 and give the flow 

between source-1 to destination. Define TCP Agent/Reno first 

and then Define TCP Agent/WestwoodNR with source-2 and 

give the flow between source-1 to destination. Start all 

simulation at 0.3 second and stop simulation at 50 second. 

Total Simulation Time is also 50 second. Following Basic 

Topology is as under drawn: 

 

Router Destination
5 Mb

Source-1

Source-2

1 Mb

10 Mb

  
 

Fig.3 Bottleneck with UDP Traffic Network 
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Fig.3.1 Throughput Of TCPs with UDP Traffic 

 

 Bottleneck  Link  With UDP Traffic Without Error Rate 

First We analyzed of TCP Reno with UDP Traffic without 

given any Error Rate. From Fig 4.1 we have seen that the 

Average Throughput of Reno in this simulation is around 4.2 

mbps. 
Then we analyzed of TCP WestwoodNR with UDP Traffic 

without given any Error Rate. From Fig 4.1 we have seen that 

the Average Throughput of WestwoodNR in this simulation is 

around 4.5 mbps. 

 Bottleneck  Link  With UDP Traffic With 0.1 Error Rate 

Here we analyzed of TCP Reno with UDP Traffic with 

given Error Rate of 0.1. From Fig 4.1 we have seen that the 

Average Throughput of Reno in this simulation is around 0.8 
mbps.  

Then we analyzed of TCP WestwoodNR with UDP Traffic 

with given Error Rate of 0.1. From Fig 4.1 we have seen that 

the Average Throughput of WestwoodNR in this simulation is 

around 1.42 mbps. 

Thus we can say that TCP WestwoodNR has much better 

Throughput with Random Drops Error. So it is very useful 

Protocol in Random Drops Error in Network. 

V. CONCLUSION 

TCP WestwoodNR estimates bandwidth and adjusts the 

cwnd and ssthreh after loss detection. It sets bandwidth to the 

measured rate currently experienced by the connection, rather 
than using the conventional MD scheme.TCP WestwoodNR 

(TCP-WNR) differs from Reno in that it adjusts the 

congestion window after a loss detection by setting it to the 

measured rate currently experienced by the connection, rather 

than using the conventional multiplicative decrease scheme 

(i.e., divide the current window by half). Most important, it 

can handle losses caused by link errors than TCP Reno. 

Moreover, if TCP-WNR and Reno coexist on a bottleneck 

with error induced losses with UDP Traffic, TCP-WNR 

outperforms Reno mainly because it can make better use of 

the channel, while “stealing” only a modest fraction of 
throughput from Reno. TCP-WNR has been implemented in 

LINUX and has been tested extensively in a NS-2. The 

performance measured in the NS-2 and it confirms the 

simulation results. In particular, It confirms that whenever 

there is given high error rate, TCP WestwoodNR has highest 

Average Throughput among all other TCPs. 
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