
International Journal of Engineering Trends and Technology- Volume4Issue3- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 477

Analysis Of TCP WestwoodNR Protocol in

Congested and Lossy Network
Amit M Sheth

#1
, Kaushika D Patel

*2
, Jitendra P Chaudhari

#3
, Jagdish M Rathod

*4

#Communication System Engineering, Charusat University

At & Po:Changa-388421, Dist-Anand,India
*Birla Vishwakarma Mahavidhyalaya Engineering College

 Vallabh Vidhyanagar-388120, Dist-Anand, India

Abstract: We study the performance of TCP WestwoodNR (TCP-

WNR), a TCP protocol controls the window using end-to-end

bandwidth estimation. This Bandwidth Estimation continuously

estimates, at the TCP sender, the packet rate of the connection

by monitoring the ACK reception rate. The estimated connection

rate is then used to compute congestion window and slow start

threshold settings after a packet loss occurred. Resetting the

window to match available bandwidth makes TCP-WNR more

robust to Random loss as well as in Congestion. Thus Rather

than to react unnecessary window reduction after every packet

lost, TCP-WNR uses this bandwidth estimation to compute

congestion window and slow start threshold. These often cause

conventional TCP to overreact, leading to unnecessary window

reduction. Experimental studies of TCP-WNR show significant

improvements in throughput performance over Reno and SACK,

particularly in wired networks. Performance Results are shown

that TCP-WNR is the best TCP protocol for link errors as well as

congested networks. Performance results also shown that with

High Error Rate Environment, TCP-WNR gives the highest

throughput among all other TCPs. Analytic results are validated

against simulation results.

Keywords: ssthresh- slow start threshold,cwnd-congestion

window, Congestion Avoidance, TCP WestwoodNR, Bandwidth

Estimated, Random Loss (Link Error)

I. INTRODUCTION

TCP is a connection-oriented, end-to-end reliable protocol

designed to fit into a layered hierarchy of protocols which

support multi-network applications. The TCP provides for

reliable inter-process communication between pairs of

processes in host computers attached to distinct but

interconnected computer communication networks. Very few

assumptions are made as to the reliability of the

communication protocols below the TCP layer. TCP assumes
it can obtain a simple, potentially unreliable datagram service

from the lower level protocols. In principle, the TCP should

be able to operate above a wide spectrum of communication

systems ranging from hard-wired connections to packet-

switched or circuit-switched networks [21].

The primary purpose of the TCP is to provide reliable,

securable logical circuit or connection service between pairs

of processes. To provide this service on top of a less reliable

internet communication system requires basic TCP facilities

in the following areas:

 Basic Data Transfer

 Reliability

 Flow Control

 Multiplexing

 Connection

 Precedence and Security

II. TCP VARIANTS

TCP congestion control involves slow start and congestion

avoidance phases. In order to improve the performance,
several mitigation techniques have been suggested over

standard TCP versions like NewReno and SACK TCP. The

proactive schemes like, TCP Westwood and TCP

WestwoodNR intend to improve flow control and avoid

packet losses from estimation of certain network parameters.

By improving the basic TCP Tahoe, Other versions Of TCPs

are invented. Tahoe TCP consist of slow start, congestion

avoidance and fast retransmission algorithms. But the problem

with TCP Tahoe is that every time a packet is lost it waits for

a timeout. TCP Reno adds “fast recovery” to the Tahoe TCP

as additional feature. When a first packet lost is happened, it

cuts its cwnd by half. But the problem with TCP Reno is in a
single window whenever there is a multiple packet loss, it

behaves same like TCP Tahoe. TCP NewReno is a

modification made in TCP Reno, where TCP sender

retransmit the packet either on reception of three dupacks or

expiration of retransmission timer. In New-Reno, partial acks

do not take TCP out of Fast Recovery. Instead, partial acks

received during Fast Recovery are treated as an indication that

the packet immediately following the acknowledged packet in

the sequence space has been lost, and should be retransmitted.

Thus, when multiple packets are lost from a single window of

data, New-Reno can recover without a retransmission timeout,
New-Reno remains in Fast Recovery until all of the data

outstanding when Fast Recovery was initiated will get

acknowledged. But the problem with TCP Newreno is that

when large amount of packets dropped from the window of

data, TCP data send retransmit time will ultimate expire. TCP

Sack option follows the format in the SACK option field

contains a number of SACK blocks, where each SACK block

reports a non-contiguous set of data that has been received and

queued. But the problem with TCP Sack is that currently

selective acknowledgments are not provided by the receiver.

http://www.internationaljournalssrg.org/

International Journal of Engineering Trends and Technology- Volume4Issue3- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 478

TCP Westwood & TCP WestwoodNR introduces ”faster”

recovery to avoid over-shrinking cwnd after three duplicate

ACKs by taking into account the end-to- end estimation of the

bandwidth available to TCP.TCP Westwood uses the

badwidth estimate to set the cwnd & ssthresh after a

congestion episode. Also it uses the same features with TCP

Reno. But the problem with TCP Westwood is that it omits

the router’s buffer size. Therefore, modifications done to

implement TCP WestwoodNR are comparable to the ones

implemented in the transition from TCP Reno to TCP

Newreno. TCP-WNR was aimed to improve performance

under random or sporadic losses. This version was tested
through simulation and showed considerable gain in terms of

throughput in almost all scenarios.

III. OVERVIEW OF TCP WestwoodNR

In TCP WestwoodNR the sender continuously computes

the connection Bandwidth Estimate (BWE) which is defined

as the share of bottleneck bandwidth used by the connection.

Thus, BWE is equal to the rate at which data is delivered to

the TCP receiver. The estimate is based on the rate at which

ACKs are received and on their payload. After a packet loss

indication, (i.e, reception of 3 duplicate ACKs, or timeout

expiration). The sender resets the congestion window and the
slow start threshold based on BWE. More precisely,

cwin=BWE x RTT.

To understand the rationale of TCP-WNR, note that BWE

varies from flow to flow sharing the same bottleneck; it

corresponds to the rate actually achieved by each

INDIVIDUAL flow. Thus, it is a FEASIBLE (i.e. achievable)

rate by definition. Consequently, the collection of all the BWE

rates, as estimated by the connections sharing the same

bottleneck, is a FEASIBLE set. When the bottleneck becomes

saturated and packets are dropped, TCP-WNR selects a set of

congestion windows that correspond exactly to the measured

BWE rates and thus reproduce the current individual
throughputs. The solution is feasible, but it is not guaranteed

per se to be “fair share.” An additional property of this

scheme, described in Section III, drives the rates to the same

equilibrium point and makes it “fair share” under uniform

propagation delays and single bottleneck assumptions.

Another important element of this procedure is the RTT

estimation. RTT is required to compute the window that

supports the estimated rate BWE. Ideally, the RTT should be

measured when the bottleneck is empty. In practice, it is set

equal to the overall minimum round trip delay (RTTmin)

measured so far on that connection (based on continuous
monitoring of ACK RTTs)[15].

A. Setting cwin and ssthresh in TCP-WNR

Further details regarding bandwidth estimation are

provided in following sections. For now, let us assume that a

sender has determined the connection bandwidth estimate

(BWE), and let us describe in this section how BWE is used to

properly set cwin and ssthresh after a packet loss indication.

First, we note that in TCP-WNR, congestion window

increments during slow start and congestion avoidance remain

the same as in Reno, , that is they are exponential and linear,

respectively. A packet loss is indicated by (a) the reception of

3 DUPACKs, or (b) a coarse timeout expiration. In case the

loss indication is 3 DUPACKs, TCP-WNR sets cwin and

ssthresh as follows:

if (3 DUPACKs are received)

ssthresh = (BWE * RTTmin) / seg_size;

if (cwin > ssthresh) /* congestion avoid. */

cwin = ssthresh;

endif
endif

In the pseudo-code, seg_size identifies the length of a TCP

segment in bits. Note that the reception of n DUPACKs is

followed by the retransmission of the missing segment, as in

the standard Fast Retransmit implemented by TCP Reno.

Also, the window growth after the cwin is reset to ssthresh

follows the rules established in the Fast Retransmit algorithm

(i.e. cwin grows by one for each further ACK, and is reset to

ssthresh after the first ACK acknowledging new data). During

the congestion avoidance phase we are probing for extra

available bandwidth. Therefore, when n DUPACKs are
received, it means that we have hit the network capacity (or

that, in the case of wireless links, one or more segments were

dropped due to sporadic losses). Thus, the slow start threshold

is set equal to the window capable of producing the measured

rate BWE when the bottleneck buffer is empty (namely,

BWE*RTTmin). The congestion window is set equal to the

ssthresh and the congestion avoidance phase is entered again

to gently probe for new available bandwidth. Note that after

ssthresh has been set, the congestion window is set equal to

the slow start threshold only if cwin > ssthresh. It is possible

that the current cwin may be below threshold. This occurs

after time-out for example, when the window is dropped to 1
as discussed in the following section. During slow start, cwin

still features an exponential increase as in the current

implementation of TCP Reno[15].

In case a packet loss is indicated by timeout expiration,

cwin and ssthresh are set as follows:

if (coarse timeout expires)

cwin = 1;

ssthresh = (BWE * RTTmin) / seg_size;

if (ssthresh < 2)

ssthresh = 2;

endif;
endif

B. Bandwidth Estimation

The TCP-WNR sender uses ACKs to estimate BWE. More

precisely, the sender uses the following information: (1) the

ACK arrival times and, (2) the increment of data delivered to

the destination. Let assume that an ACK is received at the

source at time tk, notifying that dk bytes have been received at

the TCP receiver. We can measure the sample bandwidth used

by that connection as bk=dk/(tk–tk-1), where tk-1 is the time the
previous ACK was received. Letting Δtk=tk–tk-1, then

http://www.internationaljournalssrg.org/

International Journal of Engineering Trends and Technology- Volume4Issue3- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 479

bk=dk/Δtk. Since congestion occurs whenever the low-

frequency input traffic rate exceeds the link capacity, we

employ a low pass filter to average sampled measurements

and to obtain the low-frequency components of the available

bandwidth. More precisely, we use the following discrete

approximation of the low pass filter due to Tustin.

Let bk be the bandwidth sample, and kb̂ the filtered

continuous first order low-pass filter using the Tustin estimate

of the bandwidth at time tk. Let αk be the time-varying

exponential filter coefficient at tk. The TCP-WNR filter is then

given by

)
2

()1(ˆˆ 1
1







kk
kkkk

bb
bb 

Where

k

k
k

t

t











2

2

And 1/τ is the filter cut-off frequency.

Notice the coefficients k depend on kt to properly reflect

the variable inter-arrival times.[15]

A number of considerations must be taken into account

while interpreting the information that a returning ACK

carries regarding delivery of segments to the destination. Two
of these considerations are:

1. An ACK i received by the source implies that a

transmitted packet was delivered to the destination. A

DUPACK also implies that a transmitted packet was

delivered, triggering the transmission by the receiver of the

DUPACK. Thus, DUPACKs are considered in estimating

bandwidth.

2. TCP ACKS can be “delayed,” i.e., receivers wait for a

second packet before sending an ACK, until 200 ms elapse in

which case an ACK is sent without waiting. Delayed ACKs

are also accounted for by our scheme.

These items are included in our implementation of TCP-WNR
under Linux[15].

IV. PERFORMANCE ANALYSIS OF TCP WestwoodNR

In this section a set of results of performance comparison

between TCP WestwoodNR and TCPs Reno, Sack and

Westwood. In order to be aware of the perturbations and

interactions of TCP WestwoodNR, we analyse the impact on

Throughput by Two factors (error rate, bottleneck

bandwidth).Throughput is a common metric of TCP

Performance. All simulations presented in this paper were run

using the Network Simulator version 2.35.

A. Impact of Error Rate on Throughput

We create a Link to Link with one source, one router and

one destination. We give Duplex Link between source to

router and router to destination with 5mb of Bandwidth and 0

second of Delay. Define TCP Agent like Reno, SACK,

WestwoodNR with source and give the flow between source

to destination. Start All simulation at 0.2 second and stop

simulation at 50 second. Total Simulation Time is also 50

second. Following Existing Topology is as under drawn

Source Router Destination

5 Mb 5 Mb

Fig.1 End to End Connection Network

We Analyzed the Throughput of Different TCP Agent like

Reno, SACK, WestwoodNR with different Error Rates like

0.001, 0.01, and 0.1 and we see that with Increasing Error

Rate, The Throughput Of TCP WestwoodNR increases

compare to other TCP Agent.

Fig.1.1(a) Throughput Of TCPs with 0.001 Error Rate

As From Fig. 1.1(a),(b),(c) and From Table-I we can see

from the simulation that with small Error Rate of 0.001, The

Throughput Of Reno much Higher than Other TCPs. Like

wise As we increase the Error Rate with 0.01 and then much

increase as 0.1 We can clearly see that Our Approach towards

throughput of TCP WestwoodNR is also increase with

increasing the Error Rate.

Thus it is clearly seen that with Random Drops in Topology

of the Network, TCP WestwoodNR is more useful protocol to
use in it. Thus Throughput Of TCP WestwoodNR compare

with other TCPs is increasing with increasing Error Rate.

http://www.internationaljournalssrg.org/

International Journal of Engineering Trends and Technology- Volume4Issue3- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 480

Fig.1.1(b) Throughput Of TCPs with 0.01 Error Rate

Fig.1.1(c) Throughput Of TCPs with 0.1 Error Rate

Let us we conclude this result in Table:

Table-I

Error

Rate

Average

Throughput

Of Reno in

Mbps

Average

Throughput

Of Sack in

Mbps

Average

Throughput Of

WestwoodNR in

Mbps

0.001 2.4 1.22 1.37

0.01 1.75 1.59 1.60

0.1 0.9 0.4 1.41

B. Impact of Bottleneck Bandwidth on Throughput

We first create three sources like source-1, source-2 and

source-3. Then we connect these sources with one router and

finally it connects to the destination. We give Duplex Link

between source-1 to router, source-2 to router, and source-3 to

router with 5mb of Bandwidth and 0 second of Delay. Then

we give Duplex Link between router to destination with 2mb

of Bandwidth and 0 second of Delay. Thus clearly we have

given 2mb of Bottleneck in this Topology. Define TCP

Agent/Sack1 with source-1 and give the flow between source-
1 to destination. Define TCP Agent/Westwood with source-2

and give the flow between source-2 to destination. Define

TCP Agent/WestwoodNR with source-3 and give the flow

between source-3 to destination. Start All simulation at 0.2

second and stop simulation at 50 second. Total Simulation

Time is also 50 second. Following Basic Topology is as under

drawn.

Router Destination
5 Mb

2 Mb

Source-1

Source-3

5 Mb

5 Mb

Source-2

Fig.2 Bottleneck Network

We Analyzed the Throughput of Different TCP Agent like

SACK, Westwood, and WestwoodNR with Bottleneck

Bandwidth of 2 Mbps.

Let us Analyzed From Firg.2.1(a) and (b) We have clearly

seen that with a Bottleneck Bandwidth Of 2 Mpbs and without

Error Rate given TCP WestwoodNR has the Highest Average

Throughput of 0.72 Mbps, TCP Westwood has Average

Throughput of 0.68 Mpbs and TCP Sack has lowest Average

Throughput of 0.58 Mbps. Also from Fig 2.1(b) We have

clearly seen that As We increase the Error Rate in Bottleneck
TCP WestwoodNR has much better Average Throughput

compare with some other TCPs.

http://www.internationaljournalssrg.org/

International Journal of Engineering Trends and Technology- Volume4Issue3- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 481

Fig.2.1 (a) Throughput Of TCPs with Bottleneck Bandwidth without Error

Rate

Fig.2.1(b) Throughput Of TCPs with Bottleneck Bandwidth with 0.1 Error

Rate

C. Impact Of Bottleneck Bandwidth on Throughput with UDP

Traffic

We first create a two sources like source-1 and source-2.

Then we connect these sources with one router and finally it

connects to the Destination. We give Duplex Link between

source-1 to router with 1mb of Bandwidth and 0 second of

Delay and source-2 to router with 10mb of Bandwidth and 0

second of Delay. Then we give Duplex Link between router to
destination with 5mb of Bandwidth and 0 second of Delay.

Thus clearly we have given 5mb of Bottleneck in this

Topology. Define UDP Agent with source-1 and give the flow

between source-1 to destination. Define TCP Agent/Reno first

and then Define TCP Agent/WestwoodNR with source-2 and

give the flow between source-1 to destination. Start all

simulation at 0.3 second and stop simulation at 50 second.

Total Simulation Time is also 50 second. Following Basic

Topology is as under drawn:

Router Destination
5 Mb

Source-1

Source-2

1 Mb

10 Mb

Fig.3 Bottleneck with UDP Traffic Network

http://www.internationaljournalssrg.org/

International Journal of Engineering Trends and Technology- Volume4Issue3- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 482

Fig.3.1 Throughput Of TCPs with UDP Traffic

 Bottleneck Link With UDP Traffic Without Error Rate

First We analyzed of TCP Reno with UDP Traffic without

given any Error Rate. From Fig 4.1 we have seen that the

Average Throughput of Reno in this simulation is around 4.2

mbps.
Then we analyzed of TCP WestwoodNR with UDP Traffic

without given any Error Rate. From Fig 4.1 we have seen that

the Average Throughput of WestwoodNR in this simulation is

around 4.5 mbps.

 Bottleneck Link With UDP Traffic With 0.1 Error Rate

Here we analyzed of TCP Reno with UDP Traffic with

given Error Rate of 0.1. From Fig 4.1 we have seen that the

Average Throughput of Reno in this simulation is around 0.8
mbps.

Then we analyzed of TCP WestwoodNR with UDP Traffic

with given Error Rate of 0.1. From Fig 4.1 we have seen that

the Average Throughput of WestwoodNR in this simulation is

around 1.42 mbps.

Thus we can say that TCP WestwoodNR has much better

Throughput with Random Drops Error. So it is very useful

Protocol in Random Drops Error in Network.

V. CONCLUSION

TCP WestwoodNR estimates bandwidth and adjusts the

cwnd and ssthreh after loss detection. It sets bandwidth to the

measured rate currently experienced by the connection, rather
than using the conventional MD scheme.TCP WestwoodNR

(TCP-WNR) differs from Reno in that it adjusts the

congestion window after a loss detection by setting it to the

measured rate currently experienced by the connection, rather

than using the conventional multiplicative decrease scheme

(i.e., divide the current window by half). Most important, it

can handle losses caused by link errors than TCP Reno.

Moreover, if TCP-WNR and Reno coexist on a bottleneck

with error induced losses with UDP Traffic, TCP-WNR

outperforms Reno mainly because it can make better use of

the channel, while “stealing” only a modest fraction of
throughput from Reno. TCP-WNR has been implemented in

LINUX and has been tested extensively in a NS-2. The

performance measured in the NS-2 and it confirms the

simulation results. In particular, It confirms that whenever

there is given high error rate, TCP WestwoodNR has highest

Average Throughput among all other TCPs.

ACKNOWLEDGMENT

The author is thankful to Dr. Niraj Shah, and Prof. Brijesh

Shah, for their support and encouragement during the research

endeavour. We would like to thank V. T. Patel Department of

Electronics and Communication, CHARUSAT University,

India, for cooperation in the research work.

REFERENCES

[1] Geethu Wilson, Robin Cyriac “An Enhancement to TCPW BBE by

Modifying the Bandwidth Estimation Using Modifieed EWMA”

International Journal Of Advanced Research in Computer Science and

Software Engineering, June-2012

[2] Shimaa Hagag, Ayman EI-Sayed(IEEE Senior Member)“Enhanced TCP

Westwood Congestion Avoidance Mechanism(TCP WestwoodNew)”

International Journal Of Computer Application, May-2012

[3] Kau Lan, Niu Sha “A CMT Congestion Window Updates Mechanism

Based on TCP Westwood”

International Conference on Mechatronic Science, Electric Engineering

and Computer, August-2011

[4] Neng-Chung Wang, Jong-Shin Chen, Yung-Fa Huang, Chi-LunChiou

“Performance Enhancement Of TCP in Dynamic Bandwidth Wired and

Wireless Network” Wireless Pers Commun, Springer Science+Business

Media, sMarch-2008

[5] Kenshin Yamada, Ren Wang, M. Y. Sanadidi, Mario Gerla “TCP With

Sender-Side Intelligence to Handle Dynamic, Large, Leaky Pipes”

 IEEE Communication Society, Feb-2005

[6] McCanne, S. and Floyd, S. NS Network Simulator Version 2.35,2005

[7] Kazumi Kaneko, Jiro Katto “Reno Friendly TCP Westwood Based On

Router Buffer Estimation”International Conference on Autonomic and

Autonomous System and International Conference on Networking and

Services, IEEE Computer Society, 2005

[8] Kenshin Yamada, Ren Wang, M. Y. Sanadidi, Mario Gerla “TCP

Westwood with Agile Probing: Dealing with Dynamic, Large, Leaky

Pipes” IEEE Communication Society, 2004

[9] S. Floyd, T.Henderson, A.Gurtov “The New Reno Modification to

TCP’s Fast Recovery Algorithm,RFC-3582” Networking Working

Group,April-2004

[10] S. Floyd, T. Henderson, A. Gurtov, Y. Nishida

“The New Reno Modification to TCP’s Fast Recovery Algorithm,RFC-

6582” Internet Engineering Task Force, 2004

[11] M. Gerla, B.K.F.Ng, M.Y.Sanadidi, M.Valla,R.Wang “TCP Westwood

with adaptive bandwidth estimation to improve

efficiency/friendliness tradeoffs” UCLA Computer Science Department,

Los Angeles, CA 90095, USA,Feb-2003

[12] Claudio Casetti, Mario Gerla, Saverio Mascolo, M.Y.Sanadidi,Ren

Wang “TCP Westwood: End-to-End Congestion Control For

Wired/Wireless Networks” Kluwer Academic Publisher, 2002.

[13] Ren Wang, Massimo Valla, M.Y.Sanadidi, Mario Gerla “Adaptive

Bandwidth Share Estimation in TCP Westwood” UCLA Computer

Science Department, Los Angeles, CA 90005, USA.

[14] S.Mascolo, C.Casetti, M.Gerla, S.S. Lee, M.Sanadidi “TCP Westwood:

Congestion control with faster recovery”

[15] Mario Gerla, M.Y.Sanadidi, Ren Wang, Andrea Zanella “TCP

Westwood: Congestion Window Control Using Bandwidth Estimation”

[16] Kevin Fall and Sally Floyd “Simulation-based Comparisons of Tahoe,

Reno, and SACK TCP”

[17] M.Allman, V.Paxson “TCP Congestion Control, RFC-2581” Network

Working Group, April-1999

[18] S.Floyd, T.Henderson “The New Reno Modification to TCP’s Fast

Recovery Algorithm,RFC-2582”

Networking Working Group, April-1999

[19] M.Mathis, J.Mahdavi “TCP Selective Acknowledgment Options, RFC-

2018” Network Working Group, October-1996

[20] V.Jacobson, R.Braden “TCP Extensions For Long-Delay Paths, RFC-

1072” Network Working Group, 1988

[21] Marina Del Ray “Transmission Control Protocol, RFC-793” Defence

Advanced Research Projects Agency, Arlington, Virginia, Sept-1981.

http://www.internationaljournalssrg.org/

