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Abstract—Low-density parity-check (LDPC) codes are 
freeware codes designed by Gallager in the year 1993 and 
used in most of the CDMA technology. An approach to 
study and analyze a mathematical model of belief 
propagation algorithm for decoding the encoding data 
stream with block size of 4096 using a binary symmetric 
channel to achieve good error probability of 10-6 is 
simulated with 60 iterations. Due to large size of the 
matrix, the conventional block encoding method could 
require a significant number of computations. The 
algorithm will be implemented using an hardware 
platform of TMS320C6713 DSP processor based on the 
VLIW architecture with clock rate of 225MHz, well suited 
for arithmetic & logical calculations. A simulated 
algorithm adopts iterative approach with a code rate of 
one half where decoder operates alternatively on the bit 
nodes and the check nodes to find the most likely 
codeword giving a good error performance between 10-4  
and  10-5  that is acceptable for video streaming on the 
internet. The experimental results shows that the dynamic 
range in computations is quite large resulting in numerical 
stability and intensive multiplication in the algorithm 
poses a challenge for implementation.  
 
Keywords- Bit error rate, Belief propagation decoding, 
C6713 and BSC channel. 

 

I. INTRODUCTION 
As the demand for video streaming services is constantly 
growing day by day which has motivated us to analyze and 
design algorithm to provide good error probability. The 
available bandwidth on mobile is limited and expensive thus 
we need some technology that utilizes the available spectrum 
more efficiently and providing good error correction 
capability. The implementation presented here is based on 
iterative decoding using belief propagation. The algorithm 
propagates soft probabilities of the bits between bit nodes and 
check nodes through the Tanner graph, thereby refining the 
confidence that the parity checks provide about the bits. A 
Tanner graph is a bipartite graph introduced to graphically 
represent codes. It consists of nodes and edges. The nodes are 
grouped into two sets. One set consists of n bit nodes and the 
other of m check nodes. The exchange of the soft probabilities 
is termed as belief propagation. The iterative soft-decision 

decoding of code converges to true optimum decoding if the 
tanner graph contains no cycles. Therefore, we want LDPC 
code with as few cycles as possible.  
 An LDPC code is a linear block code defined by a 
very sparse parity check matrix, which is populated primarily 
with zeros and sparsely with ones. The LDPC code also 
showed improved performance when extended to non-binary 
code as well as binary code to define code words. The LDPC 
code yields a signal to noise ratio approaching a Shannon 
channel capacity limit, which is the theoretical maximum 
amount of digital data that can be transmitted in a given 
bandwidth in presence of certain noise interference.  
 
A.  LDPC Codes: Construction and Notation 

To denote the length of the code we use N and K to 
denote its dimension and information bits M = N – K.  Low 
density parity check codes are linear codes defined by a parity 
check matrix. We will consider binary codes, where all 
operations are carried out in the binary field. Since the parity 
check matrices we consider are generally not in systemic 
form, the symbol A is use to represent parity check matrices, 
reserving the symbol H for parity check matrices in systematic 
form. Following the general convention in the literature for 
LDPC codes, assume that vectors are column vectors. A 
message vector m is a K*1 vector; a codeword is a N*1 vector. 
The generator matrix G is N*K and parity check matrix A is 
(N-K)*N, such that H.G = 0. The row of a parity check matrix 
as 

A= 

⎣
⎢
⎢
⎡ܽଵ

்

ܽଶ்
⋮
ܽெ் ⎦
⎥
⎥
⎤
 

The equation ܽ௜்ܿ  = 0 is said to be a linear parity-check 
constraint on the codeword c. The notation ݖ௠ = ܽ௠் ܿ	 where 
 ௠ is parity check or, a check. For a code specified by a parityݖ
check matrix A, it is necessary for encoding purposes to 
determine the corresponding generator matrix G. A systematic 
generator matrix may be found as follows. Using Gaussian 
elimination with column pivoting as necessary to determine an 
M*M matrix ܣ௣ିଵ	so that 

ܪ = ܣ௣ିଵܣ = ܫ]  [ଶܣ
Having found H, form 

ܩ = ቂܣଶܫ ቃ 
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Then HG = 0, so ܣ௣	HG = AG = 0, so G is a generator matrix 
for A. while A may be sparse, neither the systematic generator 
G nor H is necessarily sparse. A matrix is said to be sparse if 
fewer than half of the elements are nonzero. Parity check 
matrix should be such that no two columns have more than 
one row in which elements in both columns are nonzero.  
 
B. Encoding of LDPC code 

At this stage we will encode messages into codeword 
for LDPC codes which requires the generation of the parity 
check matrix H. The algorithms used in the construction of 
parity check matrix H will be discussed in the following 
subsections.  The first encoding method is through the use of a 
generator matrix, denoted by G. The matrix G contains the set 
of constraints that form the parity check equations of the 
LDPC code. A codeword c is formed by multiplying a source 
message u by the matrix G. This is represented by the 
equation: c u*G. For a binary code with k message bits 
and length n codeword the generator matrix G is a (k *n) 
binary matrix having the form  =  The row space of G . ்ܣ|௞ܫ
will be orthogonal to H so that ்ܪܩ = 0 . The process of 
converting H into the generator matrix G has the effect of 
causing G to lose the sparseness characteristic that was 
embodied in H.  
 

The TMS320C6x family of processors is like fast 
special-purpose microprocessors with a specialized type of 
architecture and instruction sets suitable for signal processing. 
The TMS320C6713 DSK board is powerful and relatively 
cheap, having the necessary supporting tools for real-time data 
processing. The status of the four user dip switches on the 
DSK board can be read, which provides the user with a 
feedback control interface. The TMS320C6x are the first 
processors to use velocity architecture, having implemented 
the VLIW architecture. Figure 1 shows the system architecture 
and on board supports for practical implementation.   

 

 
 

Figure1. System Architecture  
 

The C6713 DSK is a low-cost standalone development 
platform that enables users to evaluate and develop 
applications for data manipulation, mathematical calculations, 

and multiplies-accumulate operation called as MAC in a 
single instruction cycle. The MAC operation is useful in DSP 
algorithms that involve computing a vector dot product, such 
as digital filters, correlation and Fourier transforms. DSP 
processors often include several independent execution units 
that are capable of operating in parallel for FFT structure and 
reduce time to market. 

Section-I of the paper contains basics of various 
terms regarding to LDPC code and requirements of efficient 
decoding algorithms. Literature survey is given in section-II.  
Section-III shows proposed belief propagation and it’s 
significant. Mathematical calculations are also explained in 
IV section. Finally, Significance results are shown in section- 
V.  

                 II. LITERATURE REVIEW 
Basics of information theory, various encoding channel and 
decoding techniques are explained in [1] and [2] contains 
overview of LDPC code along with its structure and encoding 
schemes. In [3] Belief propagation for LDPC is described. 
Reference [6] represents the proposed architecture to achieve 
lowest error probability. Remaining papers describes the 
overview, architecture and programming part of 
TMS320C6713 DSP processor. 
 

III. BELIEF PROPAGATION ALGORITHM 
In 1981 Robert Tanner rediscovered LDPC codes in his work 
on the use of recursion to construct error correcting codes 
(Tanner, 1981). Tanner utilized bipartite graphs to describe the 
parity check matrix, which are now known as Tanner graphs, 
which display the incidence relationships between the variable 
codeword bits and the corresponding checksum tests. The 
graph G representing the parity check matrix H consists of two 
sets of vertices V and C. The set V consists of n vertices that 
represent the n codeword bits and are called variable nodes, 
denoted by  ݒ଴,ݒଵ, . .  ௡ିଵ . Variable node index correspondݒ,
to the column number of the parity check matrix. An edge is 
contained in the graph G if and only if the variable node ݒ௡ is 
contained in a parity check sum ௃ܿ . The Tanner graph for the 
parity check matrix is as shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 

               
                         Figure 2. Tanner graph for LDPC code  
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Tanner graphs can be used to estimate codeword of an LPDC 
code C by iterative probabilistic decoding algorithms, based 
on either hard or soft decisions. 

            
Figure 3.  Massage passing through Belief propagation [5] 

 
It can be seen from above diagram that in right bound iteration 
massages are send from variable nodes to check nodes and in 
left bound iteration massages are sent from check node to 
variable nodes.  
 

BP decoding is an iterative process in which 
neighboring variables “talk” to each other, passing messages 
such as:“I (variable x) think that you (check h) belong in these 
states with various likelihoods”. After enough iteration, this 
series of conversations is likely to converge to a consensus 
that determines the marginal probabilities of all the variables. 
Estimated marginal probabilities are called beliefs. So BP 
algorithm is the process to update messages until convergence, 
and then calculate beliefs. Using only the sign bit of LLR (λ), 
one can estimate the most probable value of  ܥ௡. 
 

λ (ܺ݊|y)=log
௣(௑௡ୀଵ|௬)
୮(ଡ଼୬ୀ଴|୷)

= log
௣(௑௡ୀଵ|௬௡,{௒௜:௜ஷ௡})
୮(ଡ଼୬ୀ଴|ଢ଼୬,{୷୧:୧ஷ୬})

 

 
The Belief propagation algorithm is a soft decision algorithm 
which accepts the probability of each received bit as input. 
The input bit probabilities are called the a priori probabilities 
for the received bits because they were known in advance 
before running the LDPC decoder. The bit probabilities 
returned by the decoder are called the a posteriori 
probabilities. In the case of BP decoding these probabilities 
are expressed as log-likelihood ratios. For a binary variable x 
it is easy to find p(x = 1) given p(x = 0), since p(x = 1) = 1− 
p(x = 0) and so we only need to store one probability value for 
x. Log likelihood ratios are used to represent the matrix for a 
binary variable by a single value L(x) = logቀ௉(௫ୀ଴)

௉(௫ୀଵ)
ቁ	, where 

we use log to mean ݈݃݋௘. If p(x = 0) > p(x = 1) then L(x) is 
positive and the greater the difference between p(x = 0) and 
p(x = 1), i.e. the more sure we are that p(x) = 0, the larger the 
positive value for L(x). Conversely, if p(x = 1) > p(x = 0) then 
L(x) is negative and the greater the difference between p(x = 
0) and p(x = 1) the larger the negative value for L(x). Thus the 
sign of L(x) provides the hard decision on x and the magnitude 
|L(x)| is the reliability of this decision. To translate from log 
likelihood ratios back to probabilities we note that  
P(x = 1)= ୣషై౮

ଵାୣషై౮
    and   P(x = 0)= ୣై౮

ଵାୣై౮
 

The benefit of the logarithmic representation of 
probabilities is that when probabilities need to be multiplied 
log-likelihood ratios need only be added, reducing 
implementation complexity. The aim of sum-product decoding 
is to compute the maximum a posteriori probability (MAP) for 
each codeword bit  ܲ௜ୀ௉{஼೔స	ଵ|ே} , which is the probability that 
the ith codeword bit is a 1 conditional on the event N that all 
parity-check constraints are satisfied. The extra information 
about bit i received from the parity-checks is called extrinsic 
information for bit i. The BP algorithm iteratively computes 
an approximation of the MAP value for each code bit. 
However, the a posteriori probabilities returned by the sum-
product decoder are only exact MAP probabilities if the 
Tanner graph is cycle free. 
 
Important Equations and Notations of BP in Logarithm 
domain 
A. LLR for the BSC channel is given by 
 

௜= logݎ ௣
ଵି௣

  if   ݕ௜= 1 
 

௜= logଵି௣ݎ
௣

  if   ݕ௜= 0 
 
and for AWGN Channel     

௜ݎ = 4 ௜ܻ 	
௦ܧ
௢ܰ
 

 
B. To begin decoding we set the maximum number of 
iterations and pass in H and r. Initialization isܯ௜,௝	ୀ௥	 .The 
extrinsic information from check node to bit node is given by 

௝,௜ܧ = log
1 + 	∏ ݅` ≠ ݅	(௜′⋴஻ೕ 	(/2		௝,௜`	ܯℎ݊ܽݐ
1 −	∏ ݅` ≠ ݅	(௜′⋴஻ೕ (/2		௝,௜`	ܯℎ݊ܽݐ  

C. Each bit has access to the input a priori LLR, ri, and the 
LLRs from every connected check node. The total LLR of the 
i-th bit is the sum of these LLRs: 
௜ܮ                                   = 	 	௜ݎ + 	∑ ௃,௜ܧ .௝⋴	஺೔  
However, the messages sent from the bit nodes to the check 
nodes, ܯ௜,௝	 =  are not the full LLR value for each bit. To ,ݎ
avoid sending back to each check node information which it 
already has, the message from the ith bit node to the jth check 
node is the sum in above equation without the component 
௃,௜ܧ .which was just received from the j-th check node: 

௝`,௜ܯ = 	 ෍ ௝`,௜ܧ + 	 ௜ݎ 	
	

௝`⋴஺,௝`ஷ௝

 

Finally decision of received code word bits is made from the 
equation of ܮ௜ . If c.்ܪ 	= 0 , then decoding is successfully 
completed at ith iteration because all the parity checks are 
satisfied otherwise it goes to maximum numbers of iterations.  
 

IV. MATHEMATICAL CALCULATIONS 
A .Problem Statement 
Using sum-product perform the decoding and correct the error 
with C = [0 0 1 0 1 1] is sent through a BSC with crossover 
probability p = 0.2 and received word r = [1 0 1 0 1 1]. 
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             H        =       ൦
1 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 1 1
0 0 1 1 0 1

൪ 

 
B. Thus the a priori probabilities for the BSC are ݎ௜= log ௣

ଵି௣
  if   

௜= logଵି௣ݎ ௜=1 andݕ
௣

  if   ݕ௜=0 
 
         So, Log ௣

ଵି௣
 = log଴.ଶ

଴.଼
= -1.3863 and 

 
               Log ௣

ଵି௣
 = log଴.଼

଴.ଶ
= 1.3863 

 And so the a priori log likelihood ratios are 
 
  r = [−1.3863, 1.3863,−1.3863, 1.3863,−1.3863,−1.3863]. 
 
C. To begin decoding we set the maximum number of 
iterations. Initialization is ܯ௜,௝	ୀr, the 1st bit is included in the 
1st and 3rd checks and so ܯଵ,ଵ and  ܯଷ,ଵ are 
 
 .ଷ,ଵ= r1 = −1.3863ܯ ଵ,ଵ= r1 = −1.3863 andܯ
 
Repeating for the remaining bits gives: 
i = 2:	ܯଵ,ଶ = r2 = 1.3863 ܯଶ,ଶ= r2 = 1.3863 
i = 3: ܯଶ,ଷ= r3 = −1.3863 ܯସ,ଷ= r3 = −1.3863 
i = 4: ܯଵ,ସ= r4 = 1.3863 ܯସ,ସ	= r4 = 1.3863 
i = 5: ܯଶ,ହ= r5 = −1.3863 ܯଷ,ହ= r5 = −1.3863 
i = 6 :ܯଷ,଺= r6 = −1.3863 ܯସ,଺= r6 = −1.3863 
 
D. The extrinsic information from check node to bit node is 
given by 

௝,௜ܧ = log
1 + 	∏ ݅` ≠ ݅	(௜ᇱ⋴஻ೕ 	(/2		௝,௜`	ܯℎ݊ܽݐ
1 −	∏ ݅` ≠ ݅	(௜ᇱ⋴஻ೕ (/2		௝,௜`	ܯℎ݊ܽݐ  

 

ଵ,ଵܧ						 = ݃݋݈ ቆ
1 + 	(/2		ଵ,ସ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଶ	ܯ)	ℎ݊ܽݐ
1− (/2		ଵ,ସ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଶ	ܯ)	ℎ݊ܽݐ	

ቇ 

 
So, ܧଵ,ଵ = log ቀଵା୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)	୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)	

ଵି	୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)	୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)
ቁ      

 
ଵ,ଵܧ                     = log ቀଵା଴.଺∗଴.଺

ଵି଴.଺∗଴.଺
ቁ = 0.7538 

 
Similarly, the extrinsic probability from the 1st check to the 2-
nd bit depends on the probabilities of the 1st and 4th bits 
 

ଵ,ଶܧ = ݃݋݈ ቆ
1 + 	(/2		ଵ,ସ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଵ	ܯ)	ℎ݊ܽݐ
1− (/2		ଵ,ସ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଶ	ܯ)	ℎ݊ܽݐ	

ቇ 

 

So,  ܧଵ,ଶ = ݃݋݈ ቆ
ଵା୲ୟ୬୦ቀିభ.యఴలయ

మ ቁ୲ୟ୬୦ቀభ.యఴలయ
మ ቁ

ଵି୲ୟ୬୦ቀିభ.యఴలయ
మ ቁ୲ୟ୬୦ቀభ.యఴలయ

మ ቁ
ቇ							 

 

ଵ,ଶܧ                     = log ቀଵି଴.଺∗଴.଺
ଵା଴.଺∗଴.଺

ቁ = −0.7538 
 

ଵ,ସܧ										 = ݃݋݈ ቆ
1 + 	(/2	ଵ,ଶ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଵ	ܯ)	ℎ݊ܽݐ
1− (/2		ଵ,ଶ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଵ	ܯ)	ℎ݊ܽݐ	

ቇ 

 
 So, 	ܧଵ,ସ = log ቀଵା୲ୟ୬୦	(ିଵ.ଷ଼଺ଷ/ଶ)	୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)	

ଵି	୲ୟ୬୦	(ିଵ.ଷ଼଺ଷ/ଶ)	୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)
ቁ 

 

ଵ,ସܧ = log ൬
1− 0.6 ∗ 0.6
1 + 0.6 ∗ 0.6

൰ = −0.7538 
 

Similarly, information from other check nodes can be count 
and matrix E becomes:  
 

൦

0.7538 −0.7538 . −0.7538 . .
. 0.7538 −0.7538 . −0.7538 .

0.7538 0 . . 0.7538 0.7538
. 0 −0.7538 0.7538 . −0.7538

൪ 

 
To test the intrinsic and extrinsic probabilities for each bit are 
combined. The 1st bit has extrinsic LLRs from the 1st and 3rd 
checks and an intrinsic LLR from the channel. The total LLR 
for bit one is their sum: ܮଵ ଵݎ =  ଵ,ଵܧ + ଷ,ଵܧ +   = −1.3863 + 
0.7538 + 0.7538 = 0.1213. 

Thus even though the LLR from the channel is 
negative, indicating that the bit is a one, both of the extrinsic 
LLRs are positive indicating that the bit is zero. The extrinsic 
LLRs are strong enough that the total LLR is positive and so 
the decision on bit one has effectively been changed. 
Repeating for bits two to six gives: 
 ଶ,ଶ  =1.3863-0.7538+0.7538= 1.3863ܧ + ଵ,ଶܧ +ଶݎ = ଶܮ
 ସ,ଷ = -1.3863-0.7538-0.7538= −2.8938ܧ + ଶ,ଷܧ +ଷݎ = ଷܮ
 ସ,ସ,  =1.3863-0.7538+0.7538= 1.3863ܧ + ଵ,ସܧ +ସݎ = ସܮ
 ଷ,ହ  = -1.3863-0.7538+0.7538= −1.3863ܧ + ଶ,ହܧ +ଵݎ = ହܮ
 ସ,଺ = -1.3863+0.7538-0.7538=−1.3863ܧ + ଷ,଺ܧ +ଵݎ = ଺ܮ
The hard decision on the received bits is given by the sign of 
the LLRs, Z = [0 0 1 0 1 1]. 
 
E. To check if z is a valid codeword 
 

S = Z.[1 1 0 1 0 0] = ்ܪ. 

⎣
⎢
⎢
⎢
⎢
⎡

1 0 1 0
1 1 0 0
0 1 0 1
1	 0 0 1
0 1 1 0
0 0 1 1⎦

⎥
⎥
⎥
⎥
⎤

 = [0 0 0 0 0 0].  

 
This indicates that since S is zero Z is a valid codeword, and 
the decoding stops, returning Z as the decoded word. The 
above procedure is continued until the decided bits form a 
valid codeword or until a maximum number of iterations are 
reached, whichever occurs first. 
 

V. RESULTS 
It can be seen from the simulated graph that error probability 
of 10-4 to 10-5 is obtained with iteration count of 60 and code 
rate of one half using Binary Symmetric Channel. From the 
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graph it is seen that the minimum distance of an LDPC code 
increases with increasing code length and at the same time the 
error probability decreases exponentially. In other words a 
parallel architecture where computations can be performed 
independently for all bit nodes (or check nodes) can be the 
best choice to achieve the highest throughput and where there 
is no need for large memory space. 
 

 
 
Figure 4.  BER performance of LDPC code over BP decoding 

 
VI. CONCLUSIONS 

In many cases these LDPC codes are designed with a higher 
code rate or with a lower error rate. In this paper by using 
Belief propagation decoding algorithm is simulated and 
implemented on hardware platform TMS320C6713 DSP 
processor. An error probability in the range of  10ିସ to10ିହ is 
achieved using BPSK Modulation for the signal to noise ratio 
of 2.2 dB to 2.9 dB as compare to other conventional codes. 
LDPC codes will be utilized more often in future in all forms 
of wireless communications.   
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