
International Journal of Engineering Trends and Technology (IJETT) – Volume4 Issue6- June 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2380

ANALYSIS AND IMPLEMENTATION OF SOFT-DECISION DECODING
ALGORITHM OF LDPC

 M. M. Jadhav, Ankit Pancholi, Dr. A. M. Sapkal

 Asst. Professor, E&TC, SCOE, Pune University

 Phase-I, D,-402, G.V 7, Ambegaon, Pune (INDIA).

Abstract—Low-density parity-check (LDPC) codes are
freeware codes designed by Gallager in the year 1993 and
used in most of the CDMA technology. An approach to
study and analyze a mathematical model of belief
propagation algorithm for decoding the encoding data
stream with block size of 4096 using a binary symmetric
channel to achieve good error probability of 10-6 is
simulated with 60 iterations. Due to large size of the
matrix, the conventional block encoding method could
require a significant number of computations. The
algorithm will be implemented using an hardware
platform of TMS320C6713 DSP processor based on the
VLIW architecture with clock rate of 225MHz, well suited
for arithmetic & logical calculations. A simulated
algorithm adopts iterative approach with a code rate of
one half where decoder operates alternatively on the bit
nodes and the check nodes to find the most likely
codeword giving a good error performance between 10-4
and 10-5 that is acceptable for video streaming on the
internet. The experimental results shows that the dynamic
range in computations is quite large resulting in numerical
stability and intensive multiplication in the algorithm
poses a challenge for implementation.

Keywords- Bit error rate, Belief propagation decoding,
C6713 and BSC channel.

I. INTRODUCTION
As the demand for video streaming services is constantly
growing day by day which has motivated us to analyze and
design algorithm to provide good error probability. The
available bandwidth on mobile is limited and expensive thus
we need some technology that utilizes the available spectrum
more efficiently and providing good error correction
capability. The implementation presented here is based on
iterative decoding using belief propagation. The algorithm
propagates soft probabilities of the bits between bit nodes and
check nodes through the Tanner graph, thereby refining the
confidence that the parity checks provide about the bits. A
Tanner graph is a bipartite graph introduced to graphically
represent codes. It consists of nodes and edges. The nodes are
grouped into two sets. One set consists of n bit nodes and the
other of m check nodes. The exchange of the soft probabilities
is termed as belief propagation. The iterative soft-decision

decoding of code converges to true optimum decoding if the
tanner graph contains no cycles. Therefore, we want LDPC
code with as few cycles as possible.
 An LDPC code is a linear block code defined by a
very sparse parity check matrix, which is populated primarily
with zeros and sparsely with ones. The LDPC code also
showed improved performance when extended to non-binary
code as well as binary code to define code words. The LDPC
code yields a signal to noise ratio approaching a Shannon
channel capacity limit, which is the theoretical maximum
amount of digital data that can be transmitted in a given
bandwidth in presence of certain noise interference.

A. LDPC Codes: Construction and Notation

To denote the length of the code we use N and K to
denote its dimension and information bits M = N – K. Low
density parity check codes are linear codes defined by a parity
check matrix. We will consider binary codes, where all
operations are carried out in the binary field. Since the parity
check matrices we consider are generally not in systemic
form, the symbol A is use to represent parity check matrices,
reserving the symbol H for parity check matrices in systematic
form. Following the general convention in the literature for
LDPC codes, assume that vectors are column vectors. A
message vector m is a K*1 vector; a codeword is a N*1 vector.
The generator matrix G is N*K and parity check matrix A is
(N-K)*N, such that H.G = 0. The row of a parity check matrix
as

A=

⎣
⎢
⎢
⎡ܽଵ

்

ܽଶ்
⋮
ܽெ் ⎦
⎥
⎥
⎤

The equation ܽ௜்ܿ = 0 is said to be a linear parity-check
constraint on the codeword c. The notation ݖ௠ = ܽ௠் ܿ	 where
 ௠ is parity check or, a check. For a code specified by a parityݖ
check matrix A, it is necessary for encoding purposes to
determine the corresponding generator matrix G. A systematic
generator matrix may be found as follows. Using Gaussian
elimination with column pivoting as necessary to determine an
M*M matrix ܣ௣ିଵ	so that

ܪ = ܣ௣ିଵܣ = ܫ] [ଶܣ
Having found H, form

ܩ = ቂܣଶܫ ቃ

International Journal of Engineering Trends and Technology (IJETT) – Volume4 Issue6- June 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2381

Then HG = 0, so ܣ௣	HG = AG = 0, so G is a generator matrix
for A. while A may be sparse, neither the systematic generator
G nor H is necessarily sparse. A matrix is said to be sparse if
fewer than half of the elements are nonzero. Parity check
matrix should be such that no two columns have more than
one row in which elements in both columns are nonzero.

B. Encoding of LDPC code

At this stage we will encode messages into codeword
for LDPC codes which requires the generation of the parity
check matrix H. The algorithms used in the construction of
parity check matrix H will be discussed in the following
subsections. The first encoding method is through the use of a
generator matrix, denoted by G. The matrix G contains the set
of constraints that form the parity check equations of the
LDPC code. A codeword c is formed by multiplying a source
message u by the matrix G. This is represented by the
equation: c u*G. For a binary code with k message bits
and length n codeword the generator matrix G is a (k *n)
binary matrix having the form = The row space of G . ்ܣ|௞ܫ
will be orthogonal to H so that ்ܪܩ = 0 . The process of
converting H into the generator matrix G has the effect of
causing G to lose the sparseness characteristic that was
embodied in H.

The TMS320C6x family of processors is like fast
special-purpose microprocessors with a specialized type of
architecture and instruction sets suitable for signal processing.
The TMS320C6713 DSK board is powerful and relatively
cheap, having the necessary supporting tools for real-time data
processing. The status of the four user dip switches on the
DSK board can be read, which provides the user with a
feedback control interface. The TMS320C6x are the first
processors to use velocity architecture, having implemented
the VLIW architecture. Figure 1 shows the system architecture
and on board supports for practical implementation.

Figure1. System Architecture

The C6713 DSK is a low-cost standalone development
platform that enables users to evaluate and develop
applications for data manipulation, mathematical calculations,

and multiplies-accumulate operation called as MAC in a
single instruction cycle. The MAC operation is useful in DSP
algorithms that involve computing a vector dot product, such
as digital filters, correlation and Fourier transforms. DSP
processors often include several independent execution units
that are capable of operating in parallel for FFT structure and
reduce time to market.

Section-I of the paper contains basics of various
terms regarding to LDPC code and requirements of efficient
decoding algorithms. Literature survey is given in section-II.
Section-III shows proposed belief propagation and it’s
significant. Mathematical calculations are also explained in
IV section. Finally, Significance results are shown in section-
V.

 II. LITERATURE REVIEW
Basics of information theory, various encoding channel and
decoding techniques are explained in [1] and [2] contains
overview of LDPC code along with its structure and encoding
schemes. In [3] Belief propagation for LDPC is described.
Reference [6] represents the proposed architecture to achieve
lowest error probability. Remaining papers describes the
overview, architecture and programming part of
TMS320C6713 DSP processor.

III. BELIEF PROPAGATION ALGORITHM
In 1981 Robert Tanner rediscovered LDPC codes in his work
on the use of recursion to construct error correcting codes
(Tanner, 1981). Tanner utilized bipartite graphs to describe the
parity check matrix, which are now known as Tanner graphs,
which display the incidence relationships between the variable
codeword bits and the corresponding checksum tests. The
graph G representing the parity check matrix H consists of two
sets of vertices V and C. The set V consists of n vertices that
represent the n codeword bits and are called variable nodes,
denoted by ݒ଴,ݒଵ, . . ௡ିଵ . Variable node index correspondݒ,
to the column number of the parity check matrix. An edge is
contained in the graph G if and only if the variable node ݒ௡ is
contained in a parity check sum ௃ܿ . The Tanner graph for the
parity check matrix is as shown in Figure 2.

 Figure 2. Tanner graph for LDPC code

International Journal of Engineering Trends and Technology (IJETT) – Volume4 Issue6- June 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2382

Tanner graphs can be used to estimate codeword of an LPDC
code C by iterative probabilistic decoding algorithms, based
on either hard or soft decisions.

Figure 3. Massage passing through Belief propagation [5]

It can be seen from above diagram that in right bound iteration
massages are send from variable nodes to check nodes and in
left bound iteration massages are sent from check node to
variable nodes.

BP decoding is an iterative process in which
neighboring variables “talk” to each other, passing messages
such as:“I (variable x) think that you (check h) belong in these
states with various likelihoods”. After enough iteration, this
series of conversations is likely to converge to a consensus
that determines the marginal probabilities of all the variables.
Estimated marginal probabilities are called beliefs. So BP
algorithm is the process to update messages until convergence,
and then calculate beliefs. Using only the sign bit of LLR (λ),
one can estimate the most probable value of ܥ௡.

λ (ܺ݊|y)=log
௣(௑௡ୀଵ|௬)
୮(ଡ଼୬ୀ଴|୷)

= log
௣(௑௡ୀଵ|௬௡,{௒௜:௜ஷ௡})
୮(ଡ଼୬ୀ଴|ଢ଼୬,{୷୧:୧ஷ୬})

The Belief propagation algorithm is a soft decision algorithm
which accepts the probability of each received bit as input.
The input bit probabilities are called the a priori probabilities
for the received bits because they were known in advance
before running the LDPC decoder. The bit probabilities
returned by the decoder are called the a posteriori
probabilities. In the case of BP decoding these probabilities
are expressed as log-likelihood ratios. For a binary variable x
it is easy to find p(x = 1) given p(x = 0), since p(x = 1) = 1−
p(x = 0) and so we only need to store one probability value for
x. Log likelihood ratios are used to represent the matrix for a
binary variable by a single value L(x) = logቀ௉(௫ୀ଴)

௉(௫ୀଵ)
ቁ	, where

we use log to mean ݈݃݋௘. If p(x = 0) > p(x = 1) then L(x) is
positive and the greater the difference between p(x = 0) and
p(x = 1), i.e. the more sure we are that p(x) = 0, the larger the
positive value for L(x). Conversely, if p(x = 1) > p(x = 0) then
L(x) is negative and the greater the difference between p(x =
0) and p(x = 1) the larger the negative value for L(x). Thus the
sign of L(x) provides the hard decision on x and the magnitude
|L(x)| is the reliability of this decision. To translate from log
likelihood ratios back to probabilities we note that
P(x = 1)= ୣషై౮

ଵାୣషై౮
 and P(x = 0)= ୣై౮

ଵାୣై౮

The benefit of the logarithmic representation of
probabilities is that when probabilities need to be multiplied
log-likelihood ratios need only be added, reducing
implementation complexity. The aim of sum-product decoding
is to compute the maximum a posteriori probability (MAP) for
each codeword bit ܲ௜ୀ௉{஼೔స	ଵ|ே} , which is the probability that
the ith codeword bit is a 1 conditional on the event N that all
parity-check constraints are satisfied. The extra information
about bit i received from the parity-checks is called extrinsic
information for bit i. The BP algorithm iteratively computes
an approximation of the MAP value for each code bit.
However, the a posteriori probabilities returned by the sum-
product decoder are only exact MAP probabilities if the
Tanner graph is cycle free.

Important Equations and Notations of BP in Logarithm
domain
A. LLR for the BSC channel is given by

௜= logݎ ௣
ଵି௣

 if ݕ௜= 1

௜= logଵି௣ݎ
௣

 if ݕ௜= 0

and for AWGN Channel

௜ݎ = 4 ௜ܻ 	
௦ܧ
௢ܰ

B. To begin decoding we set the maximum number of
iterations and pass in H and r. Initialization isܯ௜,௝	ୀ௥	 .The
extrinsic information from check node to bit node is given by

௝,௜ܧ = log
1 + 	∏ ݅` ≠ ݅	(௜′⋴஻ೕ 	(/2		௝,௜`	ܯℎ݊ܽݐ
1 −	∏ ݅` ≠ ݅	(௜′⋴஻ೕ (/2		௝,௜`	ܯℎ݊ܽݐ

C. Each bit has access to the input a priori LLR, ri, and the
LLRs from every connected check node. The total LLR of the
i-th bit is the sum of these LLRs:
௜ܮ = 	 	௜ݎ + 	∑ ௃,௜ܧ .௝⋴	஺೔
However, the messages sent from the bit nodes to the check
nodes, ܯ௜,௝	 = are not the full LLR value for each bit. To ,ݎ
avoid sending back to each check node information which it
already has, the message from the ith bit node to the jth check
node is the sum in above equation without the component
௃,௜ܧ .which was just received from the j-th check node:

௝`,௜ܯ = 	 ෍ ௝`,௜ܧ + 	 ௜ݎ 	
	

௝`⋴஺,௝`ஷ௝

Finally decision of received code word bits is made from the
equation of ܮ௜ . If c.்ܪ 	= 0 , then decoding is successfully
completed at ith iteration because all the parity checks are
satisfied otherwise it goes to maximum numbers of iterations.

IV. MATHEMATICAL CALCULATIONS
A .Problem Statement
Using sum-product perform the decoding and correct the error
with C = [0 0 1 0 1 1] is sent through a BSC with crossover
probability p = 0.2 and received word r = [1 0 1 0 1 1].

International Journal of Engineering Trends and Technology (IJETT) – Volume4 Issue6- June 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2383

 H = ൦
1 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 1 1
0 0 1 1 0 1

൪

B. Thus the a priori probabilities for the BSC are ݎ௜= log ௣

ଵି௣
 if

௜= logଵି௣ݎ ௜=1 andݕ
௣

 if ݕ௜=0

 So, Log ௣

ଵି௣
 = log଴.ଶ

଴.଼
= -1.3863 and

 Log ௣

ଵି௣
 = log଴.଼

଴.ଶ
= 1.3863

 And so the a priori log likelihood ratios are

 r = [−1.3863, 1.3863,−1.3863, 1.3863,−1.3863,−1.3863].

C. To begin decoding we set the maximum number of
iterations. Initialization is ܯ௜,௝	ୀr, the 1st bit is included in the
1st and 3rd checks and so ܯଵ,ଵ and ܯଷ,ଵ are

 .ଷ,ଵ= r1 = −1.3863ܯ ଵ,ଵ= r1 = −1.3863 andܯ

Repeating for the remaining bits gives:
i = 2:	ܯଵ,ଶ = r2 = 1.3863 ܯଶ,ଶ= r2 = 1.3863
i = 3: ܯଶ,ଷ= r3 = −1.3863 ܯସ,ଷ= r3 = −1.3863
i = 4: ܯଵ,ସ= r4 = 1.3863 ܯସ,ସ	= r4 = 1.3863
i = 5: ܯଶ,ହ= r5 = −1.3863 ܯଷ,ହ= r5 = −1.3863
i = 6 :ܯଷ,଺= r6 = −1.3863 ܯସ,଺= r6 = −1.3863

D. The extrinsic information from check node to bit node is
given by

௝,௜ܧ = log
1 + 	∏ ݅` ≠ ݅	(௜ᇱ⋴஻ೕ 	(/2		௝,௜`	ܯℎ݊ܽݐ
1 −	∏ ݅` ≠ ݅	(௜ᇱ⋴஻ೕ (/2		௝,௜`	ܯℎ݊ܽݐ

ଵ,ଵܧ						 = ݃݋݈ ቆ
1 + 	(/2		ଵ,ସ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଶ	ܯ)	ℎ݊ܽݐ
1− (/2		ଵ,ସ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଶ	ܯ)	ℎ݊ܽݐ	

ቇ

So, ܧଵ,ଵ = log ቀଵା୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)	୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)	

ଵି	୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)	୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)
ቁ

ଵ,ଵܧ = log ቀଵା଴.଺∗଴.଺

ଵି଴.଺∗଴.଺
ቁ = 0.7538

Similarly, the extrinsic probability from the 1st check to the 2-
nd bit depends on the probabilities of the 1st and 4th bits

ଵ,ଶܧ = ݃݋݈ ቆ
1 + 	(/2		ଵ,ସ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଵ	ܯ)	ℎ݊ܽݐ
1− (/2		ଵ,ସ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଶ	ܯ)	ℎ݊ܽݐ	

ቇ

So, ܧଵ,ଶ = ݃݋݈ ቆ
ଵା୲ୟ୬୦ቀିభ.యఴలయ

మ ቁ୲ୟ୬୦ቀభ.యఴలయ
మ ቁ

ଵି୲ୟ୬୦ቀିభ.యఴలయ
మ ቁ୲ୟ୬୦ቀభ.యఴలయ

మ ቁ
ቇ							

ଵ,ଶܧ = log ቀଵି଴.଺∗଴.଺
ଵା଴.଺∗଴.଺

ቁ = −0.7538

ଵ,ସܧ										 = ݃݋݈ ቆ
1 + 	(/2	ଵ,ଶ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଵ	ܯ)	ℎ݊ܽݐ
1− (/2		ଵ,ଶ	ܯ)	ℎ݊ܽݐ	(/2		ଵ,ଵ	ܯ)	ℎ݊ܽݐ	

ቇ

 So, 	ܧଵ,ସ = log ቀଵା୲ୟ୬୦	(ିଵ.ଷ଼଺ଷ/ଶ)	୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)	

ଵି	୲ୟ୬୦	(ିଵ.ଷ଼଺ଷ/ଶ)	୲ୟ୬୦	(ଵ.ଷ଼଺ଷ/ଶ)
ቁ

ଵ,ସܧ = log ൬
1− 0.6 ∗ 0.6
1 + 0.6 ∗ 0.6

൰ = −0.7538

Similarly, information from other check nodes can be count
and matrix E becomes:

൦

0.7538 −0.7538 . −0.7538 . .
. 0.7538 −0.7538 . −0.7538 .

0.7538 0 . . 0.7538 0.7538
. 0 −0.7538 0.7538 . −0.7538

൪

To test the intrinsic and extrinsic probabilities for each bit are
combined. The 1st bit has extrinsic LLRs from the 1st and 3rd
checks and an intrinsic LLR from the channel. The total LLR
for bit one is their sum: ܮଵ ଵݎ = ଵ,ଵܧ + ଷ,ଵܧ + = −1.3863 +
0.7538 + 0.7538 = 0.1213.

Thus even though the LLR from the channel is
negative, indicating that the bit is a one, both of the extrinsic
LLRs are positive indicating that the bit is zero. The extrinsic
LLRs are strong enough that the total LLR is positive and so
the decision on bit one has effectively been changed.
Repeating for bits two to six gives:
 ଶ,ଶ =1.3863-0.7538+0.7538= 1.3863ܧ + ଵ,ଶܧ +ଶݎ = ଶܮ
 ସ,ଷ = -1.3863-0.7538-0.7538= −2.8938ܧ + ଶ,ଷܧ +ଷݎ = ଷܮ
 ସ,ସ, =1.3863-0.7538+0.7538= 1.3863ܧ + ଵ,ସܧ +ସݎ = ସܮ
 ଷ,ହ = -1.3863-0.7538+0.7538= −1.3863ܧ + ଶ,ହܧ +ଵݎ = ହܮ
 ସ,଺ = -1.3863+0.7538-0.7538=−1.3863ܧ + ଷ,଺ܧ +ଵݎ = ଺ܮ
The hard decision on the received bits is given by the sign of
the LLRs, Z = [0 0 1 0 1 1].

E. To check if z is a valid codeword

S = Z.[1 1 0 1 0 0] = ்ܪ.

⎣
⎢
⎢
⎢
⎢
⎡

1 0 1 0
1 1 0 0
0 1 0 1
1	 0 0 1
0 1 1 0
0 0 1 1⎦

⎥
⎥
⎥
⎥
⎤

 = [0 0 0 0 0 0].

This indicates that since S is zero Z is a valid codeword, and
the decoding stops, returning Z as the decoded word. The
above procedure is continued until the decided bits form a
valid codeword or until a maximum number of iterations are
reached, whichever occurs first.

V. RESULTS
It can be seen from the simulated graph that error probability
of 10-4 to 10-5 is obtained with iteration count of 60 and code
rate of one half using Binary Symmetric Channel. From the

International Journal of Engineering Trends and Technology (IJETT) – Volume4 Issue6- June 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2384

graph it is seen that the minimum distance of an LDPC code
increases with increasing code length and at the same time the
error probability decreases exponentially. In other words a
parallel architecture where computations can be performed
independently for all bit nodes (or check nodes) can be the
best choice to achieve the highest throughput and where there
is no need for large memory space.

Figure 4. BER performance of LDPC code over BP decoding

VI. CONCLUSIONS

In many cases these LDPC codes are designed with a higher
code rate or with a lower error rate. In this paper by using
Belief propagation decoding algorithm is simulated and
implemented on hardware platform TMS320C6713 DSP
processor. An error probability in the range of 10ିସ to10ିହ is
achieved using BPSK Modulation for the signal to noise ratio
of 2.2 dB to 2.9 dB as compare to other conventional codes.
LDPC codes will be utilized more often in future in all forms
of wireless communications.

ACKNOWLEDGEMENT
The authors would like to thank the author Yuan Jiang for
providing us a good book with solved examples on Belief
Propagation which was helpful in understanding the
algorithms, as well as H. M. Jadhav for her careful reading
and detailed suggestions that helped to improve the paper.

REFERENCES
[1] R. G. Gallager, “Low density parity check codes,” IEEE
Trans. Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962.
[2] Saeedi and Hamid,” Performance of Belief Propagation for
Decoding LDPC Codes in the Presence of Channel Estimation
Error “. Communication IEEE transaction on Dept. of Syst. &
Computer. Eng., Carleton Univ., Ottawa, Ont. vol. IT-55, pp.
83–87, Jan. 2007.
[3] TMS320C6000 Code Composer Studio Tutorial,
SPRU301C, Texas Instruments, Dallas, TX, 2000.
[4] TMS320C6713 DSK Technical Reference, 506735-0001
Rev.A, May,2003.

[5] M.P.C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced
complexity iterative decoding of low-density parity check
codes based on belief propagation, ” IEEE Trans. on Comm.,
vol. 47,no. 5, pp. 673 –680, May. 1999.
[6] Introducing Low-Density Parity-Check Codes” , by Sarah
J. Johnson School of Electrical Engineering and Computer
Science The University of Newcastle, Australia-2007.
[7] TMS 320C6713- A Floating point digital signal processor
Lab Manual, SPRS186L − DECEMBER 2001 − REVISED
NOVEMBER 2005.

