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Abstract— - Evolutionary methods when used as a test data 
generator optimize the given input (usually called test case) 
according to a selected test coverage criterion encoded as a 
fitness function. Basically, the genetic algorithms and other 
Evolutionary techniques are based on pure random search. 
However, these algorithms adapt to the given problem. In the last 
decade lot of evolution based metaheuristic techniques are 
applied for searching software errors. This survey paper 
presents the work applying computational evolutionary methods 
in structural software testing based test data generation.   
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I. INTRODUCTION 
Soft computing based techniques such as evolutionary 

algorithms, fuzzy modeling, neural networks and swarm 
intelligence based algorithms have found several applications 
in software engineering domain. Some of these applications 
are cost/effort estimation for better resource utilization and 
allocation in software development [6, 42], software evolution 
for hassle free design [3], automated software testing for cost 
cutting and making software more reliable [29], module 
clustering for effective maintenance [31] and software project 
management activities such as resource scheduling [2] and 
selection of optimum development teams [49]. Considerable 
effort has been put in by various researchers to apply soft 
computing in the area of software engineering [18, 26, 35]. 
One of the most intensively applied areas of soft computing in 
software engineering is test data generation, which is 
categorized as NP-hard [52] or NP-complete [25] problem due 
to requirement of enormous efforts in finding the data out of 
large search space satisfying the complex and non-linear 
search objectives.  

Testing is both technically and economically vital for high 
quality software production. Nearly 50% of the expenses in 
software development has been estimated to be spent on 
testing. Much of the testing is done manually or using other 
labour intensive methods.  One of the most costly activities in 
software testing, where lot of scope of automation, is test data 
generation. To develop efficient, cost effective, and automatic 
test data for software testing remains a major goal in testing. 
Structural-oriented test methods which define test cases on the 
basis of internal program structure are widely used. 
Evolutionary testing is a promising approach for automation 
of structural test case design, which search test data that fulfill 

given structural test criteria. Several researchers have used 
different techniques for automated test data generation. 

In the last decade lot of evolution based metaheuristic 
techniques are applied for searching software errors. In this 
paper, we review the work applying computational 
evolutionary methods in structural software testing. Software 
testing is most cumbersome and costly but an unavoidable 
activity in software development process [5]. Although 
several researchers have underlined the importance of non-
execution based software testing [16, 23, 38] but program 
execution based testing is still the most desirable and reliable 
method for identifying bugs and errors in software [21]. In 
order to perform the execution based testing, generation of test 
cases is of prime importance, as the testing success depends 
upon the efficacy and completeness of the test cases. 
Incomplete and poor test cases may not be able to detect 
hidden faults in software; consequently providing a false 
notion of security and reliability of software leading to loss of 
millions of dollars.  

Although manual generation of test cases is relatively easy 
but is a slow and costly process. Automatic generation of test 
cases can save time and resources. At the same time, it is also 
free from human biases and doesn’t require special team of 
testers other than the developers. Despite having so many 
benefits, automated test case generation is not so easy because 
it requires intelligence of human mind to identify the non-
linearity and discreteness in test inputs’ search space. For 
improving the quality of automation and fulfilling the 
requirements of test case generation, many researchers have 
explored new soft computing based techniques such as genetic 
algorithm, simulated annealing, tabu search, ant colony 
optimization, particle swarm optimization, memetic 
algorithms etc. to fulfill testing requirement and to generate 
suitable test cases automatically [14, 28].  
 

II. Software Testing: 
 
Testing is a process in which software is executed with an 
objective to find out bugs and errors ]. Secondary objective of 
testing is to establish confidence of user, developer and 
customer that software is error free. Testing can also be 
defined as a process of executing a program with the intent of 
finding errors. Testing process comprises following activities: 

1. First, inputs (test cases) are selected.  
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2. Second, software under test is executed using these 
inputs for fault(s) identification. 

3. Third step is of isolation and resolution of these 
fault(s).  

 
When a software product is treated as a black box for 

generation of test cases, it is called black box testing. Its 
internal structure is irrelevant. This technique of testing is also 
termed testing to specifications, data-driven, functional or 
input/output-driven testing. In a realistic application there will 
be dozens of factors generating huge number of different test 
cases making technique computationally infeasible. Such 
combinatorial explosions make black box testing infeasible 
for automatic testing without using some heuristic. Another 
fault-based testing technique which is less used is introduced 
by DeMillo et al. [11] is called mutation analysis. This is 
based on the assumption that a program will be well tested if 
all simple faults are detected and removed. Simple faults are 
introduced into the program by mutation operators. Each 
change or mutation created by a mutation operator is encoded 
in a mutant program. A mutant is killed by a test case that 
causes it to produce incorrect output. A test case that kills a 
mutant is considered to be effective at finding faults in the 
program, and the mutants it kills are not executed against later 
test cases. The goal of mutation is to find test cases that kill all 
non-equivalent mutants; a test set that does so is adequate 
relative to mutation. 

 The other extreme is to focus on the internal structure 
of a software product to select test cases. Other names for this 
strategy are glass box, logic-driven or path-oriented testing. 
The most common form of white box testing requires that 
each possible path through the code is executed at least once. 
Structural testing is infested by several problems such as 
inability of identification of infeasible paths, inability of 
handling of internal variables, loops and arrays where index 
depends on input variables and dynamic data structure such as 
pointers, lists etc. So, there is a strong need of a search 
algorithm which besides having good search capability should 
be able to some of these testing problems. Testing is execution 
of software with the intent of finding errors [32].  It requires 
searching the inputs’ domains for such values which can 
invoke different output(s) or execute different component(s) 
making it necessary for employing an efficient search 
algorithm for test data generation for fulfilling testing 
objectives (criteria). Structural testing is infested by several 
problems such as inability of identification of infeasible paths, 
inability of handling of internal variables, loops and arrays 
where index depends on input variables and dynamic data 
structure such as pointers, lists etc. So, there is a strong need 
of a search algorithm which besides having good search 
capability should be able to some of these testing problems.  

 
III. Path Based Software Test Data generation 

 
For software testing purpose, as solution lies in searching 
inputs, every possible set of inputs represent the global 

population in search algorithm and selected inputs from this 
global set are represented by individuals in the population. 
Suitability of the individuals can be assessed by following a 
testing criterion for which a unique fitness function has to be 
defined. In structural testing, these criteria can be anything 
from all-statement-execution to all-path-coverage [15].  

The path testing method involves generation of test data for 
a target feasible path in such a way that on executing program, 
it covers all branches on that path. To cover a particular 
branch, the condition(s) at branch node must be satisfied by 
the test data, which directs the control flow of program to the 
next branch of the path. A path may contain several branches 
and in order to execute that path, all these branch-conditions 
must be evaluated true by the test data. Consequently, 
problem of path testing can be formulated simply as constraint 
satisfaction problem which should be analyzed and solved 
with the help of some search method by generating inputs in 
such a way that can satisfy all the branch constraints on the 
path. A valid test case is generated, which should execute the 
particular path by satisfying all of the boolean expressions 
included in that path.  

 

 
Figure 1. An Overview of a Test Data Generator[9] 
 
Figure 1 shows the different building blocks of a path based 

automatic test data generator. First test object source code is 
fed to program instrumentation for CFG and node expressions 
generation. Subsequently CFG is used to generate all possible 
paths which are filtered manually for feasible path in order to 
become input to search algorithm. Node expressions include 
branch node predicates as well as non-branch node statements 
which are used to evaluate candidate solutions in test object 
fitness functions. 

In [57], P.R. Srivastava and Tai have presented a method 
for optimizing software testing efficiency by identifying the 
most critical path clusters in a program. The SUT is converted 
into a CFG. Weights are assigned to the edges of the CFG by 
applying 80-20 rule. 80 percentage of weight of incoming 
credit is given to loops and branches and the remaining 20 
percentage of incoming credit is given to the edges in 
sequential path. The summation of weights along the edges 
comprising a path determines criticality of path. Higher the 
summation more critical is path and therefore must be tested 
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before other paths. In this way by identifying most critical 
paths that must be tested first, testing efficiency is increased. 

Another test generation approach proposed by P.R 
Srivastava is based on path coverage testing [56]. The test 
data is generated for Resource Request algorithm using Ant 
Colony Optimization algorithm (ACO) and GA. Resource 
request algorithm is deadlock avoidance algorithm used for 
resource allocation by operating system to the processes in 
execution cycle [58]. The ACO algorithm is inspired from 
behaviour of real ants where ants find closest possible route to 
a food source or destination. The ants generate chemical 
substance called pheromones which helps ants to follow the 
path. The pheromone content increases as more ants follow 
the trail. The possible paths of CFG are generated having 
maximum number of nodes. Using ACO, optimized path 
ensuring safety sequence in resource request algorithm is 
generated covering all edges of CFG. Using GA, suitable test 
data set is generated which covers the need for each process. 
The backbone of genetic process is the fitness function which 
counts number of times a particular data enters and continues 
the resource request algorithm. Higher the value of count, 
higher is chances of avoiding a deadlock. The test data with 
higher values of count is taken and genetic crossover and 
mutation is applied to yield better results. Simultaneously, 
poor test data is removed each time.  

IV. AUTOMATIC GENERATION OF TEST CASES 
The success of a test data generation method largely 

depends upon the efficiency of its search technique. There are 
several classifications of path based testing methodologies. 
Some follow traditional methods while others use heuristic for 
test data generation. Broadly speaking test data generation 
techniques can be divided into three categories; random based, 
numerical methods and metaheuristic methods.  

 
A. Random Testing Based Technique 

Random testing based search algorithms in which random 
values are generated from domains of inputs and program is 
executed using these values. If these inputs are able to satisfy 
the testing criterion then they form a test case. The random 
testing is being reported satisfactory by Duran and Ntafos [13], 
but Myers [32] viewed random testing as a worst case of 
program testing..  In recent times Mayer and Schneckenburger 
[27] empirically investigated different flavours of adaptive 
random testing and concluded that distance based random 
testing and restricted random testing are the best methods for 
this class of testing techniques. Although, in general, random 
testing is a simple, cost-effective and unbiased technique, but 
researchers do not find it suitable for large and complex 
programs, especially where input domain size is large. 
Demillo et al [11] also used random testing for identifying 
seeded faults in programs. 

 
B. Algorithmic Techniques 

Another class of search methods used in testing is 
algorithmic such as numerical maximization techniques which 

were used by Miller and Spooner to optimize the test data [30], 
alternate variable method which was employed by Korel for 
its dynamic test data generator TESTGEN [22]. In TESTGEN 
author has used alternate variable method which works in two 
phases First, an input variable is selected and its value is 
changed in small steps just to find out the direction in which 
variable minimizes the branch function. This is called 
exploratory search.  Once the direction of search is known 
then pattern search is taken in large steps to find the value of 
the variable in consideration for satisfying or minimizing the 
branch function. If selected value of the variable fails to 
decrease the branch function then steps of the pattern search 
are decreased successively before exploring other variables 
for minimization purpose. 

Another method in this class is domain reduction procedure 
proposed and used by Demillo et al for its fault based test data 
generator named as GODZILA [10]. It involves successively 
splitting of the domains of input variables which helps in 
reducing the search space (input domain) for solving a 
constraint system. Considering one predicate at a time on 
target path in control flow graph (CFG), it reduces the 
domains of input variables step by step until all the constraints 
on complete test path is satisfied. The backtracking approach 
is used when a constraint system becomes infeasible due to 
poor choice of division points in domains for reduction at 
some of the previous steps. Although many novel techniques 
such as identification of undesirable variables, finding 
optimum order of consideration of input variables, use of 
binary search algorithm and expression handling technique 
were used for improving the performance of algorithmic 
search methods some but a plenty of manual and time 
consuming analysis is required for making these algorithmic 
employable. Moreover these search methods are slow and 
ineffective. These also lack global search capabilities, which 
is a necessary requirement for software testing where 
objective-functions are very complex.  

 
C. Metaheuristic Techniques 

The most successful search algorithm class for test data 
generation is based on optimization techniques such as genetic 
algorithm (GA), simulated annealing (SA), tabu search, ant 
colony optimization (ACO), particle swarm optimization 
(PSO), memetic algorithm. A detail and up to date survey on 
use of these techniques for software testing is given in 
McMinn [28] .  

To apply search techniques for generation of test data first 
we need to  transform, the testing objective into search 
problem. For this, a mechanism should be evolved to encode 
the testing problem in search algorithm and next should be to 
assess the suitability of solutions produced by search 
technique to guide the individuals for exploring search space 
i.e fitness function need to be defined.  

A popular class of search algorithms is population based 
iterative techniques where the term population denotes group 
of individuals as fish schools, birds’ flocks and insect colonies 
like bee, GA population and ant colonies. These individual 
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competes for better efficiency by adjusting their attribute 
values. Generally due to huge size of search space, practical 
considerations limit the size of population in search 
algorithms. Each member of population is called an individual 
or a probable solution which is evaluated for its fitness so that 
new and better individual(s) may be generated. This process is 
iterated in algorithm till the search stopping criterion is met. 
General algorithm for population based search algorithm is 
represented in figure 2. 

 
1. Generate initial population comprising multiple 

individuals 
2. Evaluate each individual following a criterion specific to 

problem 
3. Generating next population by using current population 

based on their fitness. 
4. Go to step 2 until stopping criterion is met 

Figure 2: Population based search algorithm  
 
For software testing purpose, a solution lies in searching 

inputs. Every possible set of inputs represent the global 
population in search algorithm and selected inputs from this 
global set are represented by individuals in the population. 
Suitability of the individuals can be assessed by following a 
testing criterion for which a unique fitness function has to be 
defined. 

GA first time used by Xanthakis [51] is he most popular 
and intensively pursued techniques for software testing.  
Pargas et al [34], Wagener et al [48], Watkins [47], Ropar 
[39], Lin and Yeh [24], Michael et al.[29] are some of the 
pioneers researchers whose works are reported frequently in 
the testing literature. Pargas proposed a GA based testing 
technique where number of executed control dependent nodes 
of the target node decides the fitness of solutions. Michael et 
al proposed GADGET (Genetic Algorithm Data Generation 
Tool) to generate test cases for large C and C++ programs by 
using condition decision coverage metrics. 

Watkins and Ropar used coverage based criteria for 
assessing the fitness of individuals in their GA based test 
generator. Wagener et al logarithmized the objective function 
to provide better guidance for its GA based test case generator.  
Lin and Yeh used hamming distance based metric in objective 
function of their GA program to identify the similarity and 
distance between actual path and already selected target path 
in dynamic testing.  

Another metaheuristic method used for test case generation 
is SA in which process of cooling of a material simulates the 
change in energy level with time or iterations Tracey [44, 45]. 
Authors in [44,45] used a hybrid objective function which 
includes both concepts; branch distance and number of 
executed control-dependent-nodes based on the analogy of  
cooling process to construct test cases for safety critical 
system.. The steady state in energy symbolizes the 
convergence of solution.   

Another interesting technique used by Diaz et al [12] is 
based on tabu search which maintains a search list also called 

as tabu list. The Tabu search uses neighbourhood information 
and backtracking for solving local optima. Two cost functions 
are defined to intensify and diversify the search mechanism. 
These cost functions are similar to the functions used by 
Wegner et al in which individuals are penalised for taking 
wrong path while executing the program. Penalty is fixed on 
the basis of error value produced by an individual in the effort 
of satisfying a branch constraint. 

Another important technique of soft computing is PSO, 
which has been applied successfully to a wide variety of 
search and optimization problems [8, 20]. Windisch et al [50] 
have reported the application of this swarm intelligence based 
technique for test data generation for dynamic testing. They 
have conducted experiments to prove the usefulness and 
utility of search algorithm towards test case generation. 
Authors in [9] proposed another PSO based algorithm for 
automatic test case generation activity using symbolic testing. 
The approach has been validated and compared with GA on 
very small problems and was found to be a promising 
alternate to the test case generation.  

Another recent search algorithm in swarm intelligence 
category is artificial bee colony (ABC) algorithm which 
simulates the honey bees’ working toward food foraging and 
nectar gathering system optimization. The technique has been 
successfully employed on scores of engineering applications 
such as internet server allocation[33] pattern recognition [36] , 
job scheduling [7], data clustering [35] etc. In [54] authors 
have used this algorithm to find out test cases. Results are said 
to be encouraging. 

Huaizhong and Lam [19] proposed an ACO approach to 
automate test data generation for state based software testing. 
Ayari et al [4] proposed an evolutionary approach based on 
ACO to reduce the cost of test data generation in the context 
of mutation testing. This ACO based approach is enhanced by 
a probability density estimation technique in order to better 
guide the search for continuous input parameters. 

Another recent search algorithm in soft computing category 
is Big Bang Big Crunch (BBBC) algorithm, which simulates 
the energy stabilization in the universe. Singh and kumar [55] 
presents a Big Bang Big Crunch concept based search 
algorithm for automatic generation of structural software tests. 
Test cases are symbolically generated by measuring fitness of 
individuals with the help of branch distance based objective 
function. Evaluation of the test generator was performed using 
ten real world programs. Some of these programs had large 
ranges for input variables. Results show that the new 
technique is a reasonable alternative for test data generation, 
but doesn’t perform very well for large inputs and where 
constraints are having many equality constraints. 

In  [54] authors evaluated and compared different 
metaheuristic algorithms namely Genetic Algorithm (GA), 
Artificial Bee Algorithm (ABC), Particle Swarm Optimization 
(PSO) and Big Bang Big Crunch (BBBC) algorithms to 
identify suitable testing techniques [2, 3, 5, 11, 13]. In this 
work authors also identify key factors, which are responsible 
for software testing efforts by making a correlation between 
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the characteristics of programs and their respective efforts 
made in test data generation. 

II. CONCLUSIONS 
Genetic algorithm based optimization methods in the 

software testing area have reported to provide good 
performance which is vetted by a large number of research 
activities in the testing field using GA. Other methods such as 
PSO, SA have also been said to give better performance than 
GA by some of the researchers. Other optimization algorithm 
have also been used but only for namesake and investigative 
purpose. Despite positive and encouraging results, nearly all 
the techniques have used small and trivial programs as 
experimental objects. This makes scalability and applicability 
of these techniques for larger programs a real research 
concern in software testing.  

. 
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