
International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3207

Use of Evolutionary Techniques for Symbolic
Execution Based Testing

Anjali Kapoor#1, Mohit kumar*2

#1Research Scholar, CSE Deptt, RIMT-IET, India
#2Associate Professor, CSE Deptt, RIMT-IET, India

Abstract— - Evolutionary methods when used as a test data
generator optimize the given input (usually called test case)
according to a selected test coverage criterion encoded as a
fitness function. Basically, the genetic algorithms and other
Evolutionary techniques are based on pure random search.
However, these algorithms adapt to the given problem. In the last
decade lot of evolution based metaheuristic techniques are
applied for searching software errors. This survey paper
presents the work applying computational evolutionary methods
in structural software testing based test data generation.

Keywords— Evolutionary Techniques, Symbolic testing.

I. INTRODUCTION
Soft computing based techniques such as evolutionary

algorithms, fuzzy modeling, neural networks and swarm
intelligence based algorithms have found several applications
in software engineering domain. Some of these applications
are cost/effort estimation for better resource utilization and
allocation in software development [6, 42], software evolution
for hassle free design [3], automated software testing for cost
cutting and making software more reliable [29], module
clustering for effective maintenance [31] and software project
management activities such as resource scheduling [2] and
selection of optimum development teams [49]. Considerable
effort has been put in by various researchers to apply soft
computing in the area of software engineering [18, 26, 35].
One of the most intensively applied areas of soft computing in
software engineering is test data generation, which is
categorized as NP-hard [52] or NP-complete [25] problem due
to requirement of enormous efforts in finding the data out of
large search space satisfying the complex and non-linear
search objectives.

Testing is both technically and economically vital for high
quality software production. Nearly 50% of the expenses in
software development has been estimated to be spent on
testing. Much of the testing is done manually or using other
labour intensive methods. One of the most costly activities in
software testing, where lot of scope of automation, is test data
generation. To develop efficient, cost effective, and automatic
test data for software testing remains a major goal in testing.
Structural-oriented test methods which define test cases on the
basis of internal program structure are widely used.
Evolutionary testing is a promising approach for automation
of structural test case design, which search test data that fulfill

given structural test criteria. Several researchers have used
different techniques for automated test data generation.

In the last decade lot of evolution based metaheuristic
techniques are applied for searching software errors. In this
paper, we review the work applying computational
evolutionary methods in structural software testing. Software
testing is most cumbersome and costly but an unavoidable
activity in software development process [5]. Although
several researchers have underlined the importance of non-
execution based software testing [16, 23, 38] but program
execution based testing is still the most desirable and reliable
method for identifying bugs and errors in software [21]. In
order to perform the execution based testing, generation of test
cases is of prime importance, as the testing success depends
upon the efficacy and completeness of the test cases.
Incomplete and poor test cases may not be able to detect
hidden faults in software; consequently providing a false
notion of security and reliability of software leading to loss of
millions of dollars.

Although manual generation of test cases is relatively easy
but is a slow and costly process. Automatic generation of test
cases can save time and resources. At the same time, it is also
free from human biases and doesn’t require special team of
testers other than the developers. Despite having so many
benefits, automated test case generation is not so easy because
it requires intelligence of human mind to identify the non-
linearity and discreteness in test inputs’ search space. For
improving the quality of automation and fulfilling the
requirements of test case generation, many researchers have
explored new soft computing based techniques such as genetic
algorithm, simulated annealing, tabu search, ant colony
optimization, particle swarm optimization, memetic
algorithms etc. to fulfill testing requirement and to generate
suitable test cases automatically [14, 28].

II. Software Testing:

Testing is a process in which software is executed with an
objective to find out bugs and errors]. Secondary objective of
testing is to establish confidence of user, developer and
customer that software is error free. Testing can also be
defined as a process of executing a program with the intent of
finding errors. Testing process comprises following activities:

1. First, inputs (test cases) are selected.

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3208

2. Second, software under test is executed using these
inputs for fault(s) identification.

3. Third step is of isolation and resolution of these
fault(s).

When a software product is treated as a black box for

generation of test cases, it is called black box testing. Its
internal structure is irrelevant. This technique of testing is also
termed testing to specifications, data-driven, functional or
input/output-driven testing. In a realistic application there will
be dozens of factors generating huge number of different test
cases making technique computationally infeasible. Such
combinatorial explosions make black box testing infeasible
for automatic testing without using some heuristic. Another
fault-based testing technique which is less used is introduced
by DeMillo et al. [11] is called mutation analysis. This is
based on the assumption that a program will be well tested if
all simple faults are detected and removed. Simple faults are
introduced into the program by mutation operators. Each
change or mutation created by a mutation operator is encoded
in a mutant program. A mutant is killed by a test case that
causes it to produce incorrect output. A test case that kills a
mutant is considered to be effective at finding faults in the
program, and the mutants it kills are not executed against later
test cases. The goal of mutation is to find test cases that kill all
non-equivalent mutants; a test set that does so is adequate
relative to mutation.

 The other extreme is to focus on the internal structure
of a software product to select test cases. Other names for this
strategy are glass box, logic-driven or path-oriented testing.
The most common form of white box testing requires that
each possible path through the code is executed at least once.
Structural testing is infested by several problems such as
inability of identification of infeasible paths, inability of
handling of internal variables, loops and arrays where index
depends on input variables and dynamic data structure such as
pointers, lists etc. So, there is a strong need of a search
algorithm which besides having good search capability should
be able to some of these testing problems. Testing is execution
of software with the intent of finding errors [32]. It requires
searching the inputs’ domains for such values which can
invoke different output(s) or execute different component(s)
making it necessary for employing an efficient search
algorithm for test data generation for fulfilling testing
objectives (criteria). Structural testing is infested by several
problems such as inability of identification of infeasible paths,
inability of handling of internal variables, loops and arrays
where index depends on input variables and dynamic data
structure such as pointers, lists etc. So, there is a strong need
of a search algorithm which besides having good search
capability should be able to some of these testing problems.

III. Path Based Software Test Data generation

For software testing purpose, as solution lies in searching
inputs, every possible set of inputs represent the global

population in search algorithm and selected inputs from this
global set are represented by individuals in the population.
Suitability of the individuals can be assessed by following a
testing criterion for which a unique fitness function has to be
defined. In structural testing, these criteria can be anything
from all-statement-execution to all-path-coverage [15].

The path testing method involves generation of test data for
a target feasible path in such a way that on executing program,
it covers all branches on that path. To cover a particular
branch, the condition(s) at branch node must be satisfied by
the test data, which directs the control flow of program to the
next branch of the path. A path may contain several branches
and in order to execute that path, all these branch-conditions
must be evaluated true by the test data. Consequently,
problem of path testing can be formulated simply as constraint
satisfaction problem which should be analyzed and solved
with the help of some search method by generating inputs in
such a way that can satisfy all the branch constraints on the
path. A valid test case is generated, which should execute the
particular path by satisfying all of the boolean expressions
included in that path.

Figure 1. An Overview of a Test Data Generator[9]

Figure 1 shows the different building blocks of a path based

automatic test data generator. First test object source code is
fed to program instrumentation for CFG and node expressions
generation. Subsequently CFG is used to generate all possible
paths which are filtered manually for feasible path in order to
become input to search algorithm. Node expressions include
branch node predicates as well as non-branch node statements
which are used to evaluate candidate solutions in test object
fitness functions.

In [57], P.R. Srivastava and Tai have presented a method
for optimizing software testing efficiency by identifying the
most critical path clusters in a program. The SUT is converted
into a CFG. Weights are assigned to the edges of the CFG by
applying 80-20 rule. 80 percentage of weight of incoming
credit is given to loops and branches and the remaining 20
percentage of incoming credit is given to the edges in
sequential path. The summation of weights along the edges
comprising a path determines criticality of path. Higher the
summation more critical is path and therefore must be tested

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3209

before other paths. In this way by identifying most critical
paths that must be tested first, testing efficiency is increased.

Another test generation approach proposed by P.R
Srivastava is based on path coverage testing [56]. The test
data is generated for Resource Request algorithm using Ant
Colony Optimization algorithm (ACO) and GA. Resource
request algorithm is deadlock avoidance algorithm used for
resource allocation by operating system to the processes in
execution cycle [58]. The ACO algorithm is inspired from
behaviour of real ants where ants find closest possible route to
a food source or destination. The ants generate chemical
substance called pheromones which helps ants to follow the
path. The pheromone content increases as more ants follow
the trail. The possible paths of CFG are generated having
maximum number of nodes. Using ACO, optimized path
ensuring safety sequence in resource request algorithm is
generated covering all edges of CFG. Using GA, suitable test
data set is generated which covers the need for each process.
The backbone of genetic process is the fitness function which
counts number of times a particular data enters and continues
the resource request algorithm. Higher the value of count,
higher is chances of avoiding a deadlock. The test data with
higher values of count is taken and genetic crossover and
mutation is applied to yield better results. Simultaneously,
poor test data is removed each time.

IV. AUTOMATIC GENERATION OF TEST CASES
The success of a test data generation method largely

depends upon the efficiency of its search technique. There are
several classifications of path based testing methodologies.
Some follow traditional methods while others use heuristic for
test data generation. Broadly speaking test data generation
techniques can be divided into three categories; random based,
numerical methods and metaheuristic methods.

A. Random Testing Based Technique

Random testing based search algorithms in which random
values are generated from domains of inputs and program is
executed using these values. If these inputs are able to satisfy
the testing criterion then they form a test case. The random
testing is being reported satisfactory by Duran and Ntafos [13],
but Myers [32] viewed random testing as a worst case of
program testing.. In recent times Mayer and Schneckenburger
[27] empirically investigated different flavours of adaptive
random testing and concluded that distance based random
testing and restricted random testing are the best methods for
this class of testing techniques. Although, in general, random
testing is a simple, cost-effective and unbiased technique, but
researchers do not find it suitable for large and complex
programs, especially where input domain size is large.
Demillo et al [11] also used random testing for identifying
seeded faults in programs.

B. Algorithmic Techniques

Another class of search methods used in testing is
algorithmic such as numerical maximization techniques which

were used by Miller and Spooner to optimize the test data [30],
alternate variable method which was employed by Korel for
its dynamic test data generator TESTGEN [22]. In TESTGEN
author has used alternate variable method which works in two
phases First, an input variable is selected and its value is
changed in small steps just to find out the direction in which
variable minimizes the branch function. This is called
exploratory search. Once the direction of search is known
then pattern search is taken in large steps to find the value of
the variable in consideration for satisfying or minimizing the
branch function. If selected value of the variable fails to
decrease the branch function then steps of the pattern search
are decreased successively before exploring other variables
for minimization purpose.

Another method in this class is domain reduction procedure
proposed and used by Demillo et al for its fault based test data
generator named as GODZILA [10]. It involves successively
splitting of the domains of input variables which helps in
reducing the search space (input domain) for solving a
constraint system. Considering one predicate at a time on
target path in control flow graph (CFG), it reduces the
domains of input variables step by step until all the constraints
on complete test path is satisfied. The backtracking approach
is used when a constraint system becomes infeasible due to
poor choice of division points in domains for reduction at
some of the previous steps. Although many novel techniques
such as identification of undesirable variables, finding
optimum order of consideration of input variables, use of
binary search algorithm and expression handling technique
were used for improving the performance of algorithmic
search methods some but a plenty of manual and time
consuming analysis is required for making these algorithmic
employable. Moreover these search methods are slow and
ineffective. These also lack global search capabilities, which
is a necessary requirement for software testing where
objective-functions are very complex.

C. Metaheuristic Techniques

The most successful search algorithm class for test data
generation is based on optimization techniques such as genetic
algorithm (GA), simulated annealing (SA), tabu search, ant
colony optimization (ACO), particle swarm optimization
(PSO), memetic algorithm. A detail and up to date survey on
use of these techniques for software testing is given in
McMinn [28] .

To apply search techniques for generation of test data first
we need to transform, the testing objective into search
problem. For this, a mechanism should be evolved to encode
the testing problem in search algorithm and next should be to
assess the suitability of solutions produced by search
technique to guide the individuals for exploring search space
i.e fitness function need to be defined.

A popular class of search algorithms is population based
iterative techniques where the term population denotes group
of individuals as fish schools, birds’ flocks and insect colonies
like bee, GA population and ant colonies. These individual

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3210

competes for better efficiency by adjusting their attribute
values. Generally due to huge size of search space, practical
considerations limit the size of population in search
algorithms. Each member of population is called an individual
or a probable solution which is evaluated for its fitness so that
new and better individual(s) may be generated. This process is
iterated in algorithm till the search stopping criterion is met.
General algorithm for population based search algorithm is
represented in figure 2.

1. Generate initial population comprising multiple

individuals
2. Evaluate each individual following a criterion specific to

problem
3. Generating next population by using current population

based on their fitness.
4. Go to step 2 until stopping criterion is met

Figure 2: Population based search algorithm

For software testing purpose, a solution lies in searching

inputs. Every possible set of inputs represent the global
population in search algorithm and selected inputs from this
global set are represented by individuals in the population.
Suitability of the individuals can be assessed by following a
testing criterion for which a unique fitness function has to be
defined.

GA first time used by Xanthakis [51] is he most popular
and intensively pursued techniques for software testing.
Pargas et al [34], Wagener et al [48], Watkins [47], Ropar
[39], Lin and Yeh [24], Michael et al.[29] are some of the
pioneers researchers whose works are reported frequently in
the testing literature. Pargas proposed a GA based testing
technique where number of executed control dependent nodes
of the target node decides the fitness of solutions. Michael et
al proposed GADGET (Genetic Algorithm Data Generation
Tool) to generate test cases for large C and C++ programs by
using condition decision coverage metrics.

Watkins and Ropar used coverage based criteria for
assessing the fitness of individuals in their GA based test
generator. Wagener et al logarithmized the objective function
to provide better guidance for its GA based test case generator.
Lin and Yeh used hamming distance based metric in objective
function of their GA program to identify the similarity and
distance between actual path and already selected target path
in dynamic testing.

Another metaheuristic method used for test case generation
is SA in which process of cooling of a material simulates the
change in energy level with time or iterations Tracey [44, 45].
Authors in [44,45] used a hybrid objective function which
includes both concepts; branch distance and number of
executed control-dependent-nodes based on the analogy of
cooling process to construct test cases for safety critical
system.. The steady state in energy symbolizes the
convergence of solution.

Another interesting technique used by Diaz et al [12] is
based on tabu search which maintains a search list also called

as tabu list. The Tabu search uses neighbourhood information
and backtracking for solving local optima. Two cost functions
are defined to intensify and diversify the search mechanism.
These cost functions are similar to the functions used by
Wegner et al in which individuals are penalised for taking
wrong path while executing the program. Penalty is fixed on
the basis of error value produced by an individual in the effort
of satisfying a branch constraint.

Another important technique of soft computing is PSO,
which has been applied successfully to a wide variety of
search and optimization problems [8, 20]. Windisch et al [50]
have reported the application of this swarm intelligence based
technique for test data generation for dynamic testing. They
have conducted experiments to prove the usefulness and
utility of search algorithm towards test case generation.
Authors in [9] proposed another PSO based algorithm for
automatic test case generation activity using symbolic testing.
The approach has been validated and compared with GA on
very small problems and was found to be a promising
alternate to the test case generation.

Another recent search algorithm in swarm intelligence
category is artificial bee colony (ABC) algorithm which
simulates the honey bees’ working toward food foraging and
nectar gathering system optimization. The technique has been
successfully employed on scores of engineering applications
such as internet server allocation[33] pattern recognition [36] ,
job scheduling [7], data clustering [35] etc. In [54] authors
have used this algorithm to find out test cases. Results are said
to be encouraging.

Huaizhong and Lam [19] proposed an ACO approach to
automate test data generation for state based software testing.
Ayari et al [4] proposed an evolutionary approach based on
ACO to reduce the cost of test data generation in the context
of mutation testing. This ACO based approach is enhanced by
a probability density estimation technique in order to better
guide the search for continuous input parameters.

Another recent search algorithm in soft computing category
is Big Bang Big Crunch (BBBC) algorithm, which simulates
the energy stabilization in the universe. Singh and kumar [55]
presents a Big Bang Big Crunch concept based search
algorithm for automatic generation of structural software tests.
Test cases are symbolically generated by measuring fitness of
individuals with the help of branch distance based objective
function. Evaluation of the test generator was performed using
ten real world programs. Some of these programs had large
ranges for input variables. Results show that the new
technique is a reasonable alternative for test data generation,
but doesn’t perform very well for large inputs and where
constraints are having many equality constraints.

In [54] authors evaluated and compared different
metaheuristic algorithms namely Genetic Algorithm (GA),
Artificial Bee Algorithm (ABC), Particle Swarm Optimization
(PSO) and Big Bang Big Crunch (BBBC) algorithms to
identify suitable testing techniques [2, 3, 5, 11, 13]. In this
work authors also identify key factors, which are responsible
for software testing efforts by making a correlation between

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3211

the characteristics of programs and their respective efforts
made in test data generation.

II. CONCLUSIONS
Genetic algorithm based optimization methods in the

software testing area have reported to provide good
performance which is vetted by a large number of research
activities in the testing field using GA. Other methods such as
PSO, SA have also been said to give better performance than
GA by some of the researchers. Other optimization algorithm
have also been used but only for namesake and investigative
purpose. Despite positive and encouraging results, nearly all
the techniques have used small and trivial programs as
experimental objects. This makes scalability and applicability
of these techniques for larger programs a real research
concern in software testing.

.

REFERENCES
[1] Ahmed MA, Hermadi I. GA-based multiple paths test data

generator. Computers and Operations Research (2007),(article in
press)

[2] Alba E and Chicano F, Software Project Management with GAs,
Information Sciences, 177(11) 2007 pp.2380-2401

[3] Amoui M, Mirarab S, Ansari A and Lucas C, A Genetic Algorithm
Approach to Design Evolution using Design Pattern
Transformation, International Journal of Information Technology
and Intelligent Computing 1(2, 2006 pp. 235-244.

[4] Ayari K, Bouktif S and Antoniol G, Automatic Mutation Test
Input Data Generation via Ant Colony, GECCO’07, July 7–11,
2007, London, England, United Kingdom.

[5] Beizer B. Software testing techniques. 2nd ed., Dreamtech
publication New Delhi. 1990.

[6] Burgess CJ and Lefley M, Can Genetic Programming Improve
Software Effort Estimation? A Comparative Evaluation,
Information & Software Technology, 43(14), 2001, pp. 863-873

[7] Chong C.S., Low M.Y.H., Sivakumar A.I., Gay K.L., A Bee
Colony Optimization Algorithm to Job Shop Scheduling,
Proceedings of the 37th Winter Simulation, Monterey, California,
1954-1961,2006.

[8] Clow B, and White T, An evolutionary race: A comparison of
genetic algorithms and particle swarm optimization for training
neural networks. In Proceedings of the International Conference
on Artificial Intelligence, IC-AI ’04, Volume 2, pages 582–588.
CSREA Press, 2004.

[9] Dahiya SS, Chhabra JK and Kumar S, Application of Particle
Swarm Optimization Algorithm to Symbolic Software Testing,
IISN 2010, To be held in ISTK, Kalawad on 24-27 February 2010.
(Communicated for publication)

[10] Demillo R. A., and Offutt A. J., Constraint-based automatic test
data generation, IEEE transaction on Software engineering.
Vol.17, No.9, September, 1991 pp. 900-910

[11] DeMillo, R.A., Lipton R.J., and Sayward F.G., "Hints on Test
Data Selection: Help for the Practicing Programmer," IEEE
Computer, Vol. II, No. 4, pp. 34-41, 1978.

[12] Díaz E, Javier T, Raquel B, José JD. A tabu search algorithm for
structural software testing. Computers and Operations Research
(2007), doi:10.1016/j.cor.2007.01.009

[13] Duran JW, Ntafos AS Report On Random Testing, international
Conference on Software engineering Proceedings of the 5th
international conference on Software engineering 1981, San Diego,
California, United States March 09 - 12, 1981

[14] Edvardsson J. A survey on automatic test data generation In
Proceedings of the second conference on computer science and
engineering, Linkoping: ESCEL; October 1999; 21–28.

[15] Frankl PG, Weyuker EJ. An Applicable Family of Data Flow
Testing Criteria. IEEE Transaction On Software Engineering.
1988; 14(10):1483-1498.

[16] Gilb T, Graham D. Software Inspection. Addison-Wesley 1993
[17] Goldberg DE. Genetic algorithms in search, optimization, and

machine learning. Addison-Wesley, 1989.
[18] Harman M and Jones BF, Search-based Software Engineering,

Information & Software Technology, 43(14) 2001, pp. 833-839
[19] Huaizhong LI, LAM Peng C. An Ant Colony Optimization

Approach to Test Sequence Generation for State based Software
Testing, Proceedings of the Fifth International IEEE Conference
on Quality Software (QSIC’05) 2005.

[20] Jones K. O. Comparison of genetic algorithm and particle swarm
optimization. In Proceedings of the International Conference on
Computer Systems and Technologies, 2005.

[21] Jorgenson P. Software Testing: A Craftman's Approach, 2nd
edition CRC Press, Inc. Boca Raton, FL, USA, 2001.

[22] Korel B. Automated software test data generation. IEEE
transaction on software engineering, 1990; 16(8):870-879.

[23] Laitenberger, O. and DeBaud, J. An encompassing life cycle-
centric survey of software inspection. J. Syst. Soft. 50 (2000), 5–31.

[24] Lin JC,Yeh PL. Automatic test data generation for path testing
using GAs. Information Sciences 2001; 131:47–64.

[25] Mansour N, Salame M. Data generation for path testing. Software
Quality Journal 2004; 12:121–136.

[26] Mantere T and Alander JT, Evolutionary Software Engineering, A
Review, Applied Soft Computing, 5(3) 2005, pp. 315-331

[27] Mayer J, Schneckenburger C, An Empirical Analysis and
Comparison of Random Testing Techniques, ISESE’06, September
21–22, 2006, Rio de Janeiro, Brazil pp. 105-114.

[28] McMinn P. Search-based Software Test Data Generation: A
Survey. Software Testing, Verification and Reliability June 2004;
14(2):105-156.

[29] Michael C, McGraw G, Schatz M. Generating software test data
by evolution. IEEE Transactions on Software Engineering 2001;
27(12):1085–1110.

[30] Miller W, Spooner D. Automatic generation of floating-point test
data. IEEE Transactions on Software Engineering 1976; 2(3):223-
226.

[31] Mitchell BS and Mancoridis S, On the Automatic Modularization
of Software Systems using the Bunch Tool, IEEE Transactions on
Software Engineering, 32(3), 2006, pp. 193-208

[32] Myers GJ. The art of software testing. New York: Wiley; 1979
[33] Nakrani S., Tovey C, On Honey Bees and Dynamic Allocation in

an Internet Server Colony, Proceedings of 2nd International
Workshop on the Mathematics and Algorithms of Social Insects,
Atlanta, Georgia, USA, 2003.

[34] Pargas RP, Harrold MJ, Peck R. Test-data generation using genetic
algorithms. Journal of Software Testing, Verification and
Reliability 1999; 9(4):263–82.

[35] Pedrycz W, Computational Intelligence as an Emerging Paradigm
of Software Engineering, Proceedings of the 14th International
ACM Conference on Software Engineering and Knowledge
Engineering (SEKE '02), 2002, pp. 7-14

[36] Pham D.T., Otri S., Afify A., Mahmuddin M., and Al-Jabbouli H.
Data clustering using the Bees Algorithm, in 40th CIRP
International Seminar on ManufacturingSystems. 2007: Liverpool.

[37] Pham D.T., Otri S., Ghanbarzadeh A., Kog E., Application of the
Bees Algorithm to the Training of Learning Vector Quantisation
Networks for Control Chart Pattern Recognition, ICTTA'06
Information and Communication Technologies, 1624-1629, 2006b.

[38] Porter A, Sey A, Votta L. A review of software inspections.
Technical Report: CS-TR-3552, University of Maryland at
College Park College Park, MD, USA, 1995

[39] Roper M. Computer aided software testing using genetic
algorithms. In 10th International Software Quality Week, San
Francisco, USA, 1997.

[40] Schmickl T., Thenius R., Crailsheim K., Simulating Swarm
Intelligence in Honey Bees: Foraging in Differently Fluctuating
Environments, GECCO'05, Washington, DC, USA, 273-274,2005.

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3212

[41] Seeley T.D., The Wisdom of the Hive, Harvard University Press,
Cambridge, MA, 1995.

[42] Shukla KK, Neuro-Genetic Prediction of Software Development
Effort, Information and Software Technology, 42(10) 2000, pp.
701-713

[43] Thayer, R.A., M. Lipow, and E.C. Nelson, Software Reliability,
North-Holland, Amsterdam, 1978.

[44] Tracey N, Clark J, Mander K, and McDermid J. An automated
framework for structural test-data generation. In Proceedings of
the International Conference on Automated Software Engineering,
1998; 285-288.

[45] Tracey N. A Search-Based Automated Test-Data Generation
Framework for Safety Critical Software. PhD thesis, University of
York, 2000.

[46] Watkins A, Hufnagel E. M. Evolutionary test data generation: a
comparison of fitness functions. Software Practice & Experience
2006; 36:95–116

[47] Watkins AL. The automatic generation of test data using genetic
algorithms. In The fourth software quality conference 1995;
2:300–309.

[48] Wegener J, Baresel A, Sthamer H., “Evolutionary test environment
for automatic structural testing”. Information and Software
Technology 43, 841–54, 2001;

[49] Wen F and Lin C, Multistage Human Resource Allocation for
Software Development by Multi-objective Genetic Algorithm, The
Open Applied Mathematics Journal, 2, 2008, pp. 95-103

[50] Windisch A, Wappler S and Wegener J, Applying Particle Swarm
Optimization to Software Testing, Proceedings of the 2007
conference on Genetic and evolutionary computation GECCO’07,
July 7–11, 2007, London, England, United Kingdom.

[51] Xanthakis S, Ellis C, Skourlas C, Gall AL, Katsikas S,
Karapoulios K. Application of genetic algorithms to software
testing. In The fifth international conference on software
engineering 1992; 625–36.

[52] Yuan Z. A Search-Based Framework for Automatic Test-Set
Generation for MATLAB/Simulink Models. PhD Thesis,
University of York Department of Computer Science, December
2005.

[53] Surender Singh and Parveen Kumar “Empirical Evaluation of
Metaheuristic Approaches for Symbolic Execution based
Automated Test Generation" International Journal of Information
Technology and Knowledge Management (ISSN: 0973-4414) July-
December 2012, Volume 5, No. 2, pp. 489-493 (Impact Factor 0.47)

[54] Surender Singh Dahiya, Jitender kumar Chhabra and Shakti
Kumar “Application of Artificial Bee Colony Algorithm to
Software Testing”, In the proceeding of 21st Australian Software
Engineering Conference, Auckland, New Zealand April 2010.

[55] Surender Singh and Parveen Kumar “Application of Big Bang Big
Crunch Algorithm to Software Testing" International Journal of
Computer Science and Communication Vol. 3, No. 1, January-
June 2012, pp. 259-262(Impact Factor 0.48)

[56] Praveen Ranjan Srivastava et. al., “Generation of test data using
Meta heuristic approach” IEEE, 2008, pp.19 - 21.

[57] Praveen Ranjan Srivastava and Tai-hoon Kim, “Application of
genetic algorithm in software testing” International Journal of
software Engineering and its Applications, 3(4), 2009, pp.87 – 96.

[58] Jose Carlos et. al., “A strategy for evaluating feasible and
unfeasible test cases for the evolutionary testing of object oriented
software”, AST’ 08. ACM, 2008,

