
 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 6 - Dec 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 302

An Approach to Build Software Based on Fault
Tolerance Computing Using Uncertainty Factor

Mrityunjay Brahma

Department of Computer Science,

MIPS, MITS Rayagada, Odisha 765017, India

Abstract— In this work, we have started with an overview on
fault tolerance based system. In case of design diversity based
software fault tolerance system, we observed that uncertainty
remains an important factor. Keeping this factor, we have
discussed about implementing Bayes’ theorem and probabilistic
mathematical model to handle the uncertainty factor. We assume
that, once developed, the complete model will give us better
efficiency. The rest of this paper deals with other types of fault
tolerance systems and their approaches. This part is a kind of
literature review, which includes, fault tolerant computing
schemes that rely on the single-design as well as on the multiple-
design. Further, in single-design, we have discussed about
recovery block, N-version programming, N self-checking
programming scheme. Lastly, focusing on multiple-design, we
have discussed about software engineering aspects, error
detection mechanisms and fault tolerance by fault injection. The
paper ends with a general conclusion.

Keywords— Fault tolerance, Software fault tolerance, Bayes’
Theorem, Uncertainty.

I. INTRODUCTION

Most fault-tolerant computer systems are designed to be

able to handle several possible failures, including hardware-
related faults such as hard disk failures, input or output device
failures, or other temporary or permanent failures; software
bugs and errors; interface errors between the hardware and
software, including driver failures; operator errors, such as
erroneous keystrokes, bad command sequences, or installing
unexpected software; and physical damage or other flaws
introduced to the system from an outside source. Hardware
fault-tolerance is the most common application of these
systems, designed to prevent failures due to hardware
components. Typically, components have multiple backups
and are separated into smaller "segments" that act to contain a
fault, and extra redundancy is built into all physical
connectors, power supplies, fans, etc. There are special
software and instrumentation packages designed to detect
failures, such as fault masking, which is a way to ignore faults
by seamlessly preparing a backup component to execute
something as soon as the instruction is sent, using a sort of
voting protocol where if the main and backups don't give the
same results, the flawed output is ignored. Research into the
kinds of tolerances needed for critical systems involves a large

amount of interdisciplinary work. The more complex the
system, the more carefully all possible interactions have to be
considered and prepared for. Considering the importance of
high-value systems in transport, public utilities and the
military, the field of topics that touch on research is very
wide: it can include such obvious subjects as software
modeling and reliability, or hardware design, to arcane
elements such as stochastic models, graph theory, formal or
exclusionary logic, parallel processing, remote data
transmission, and more. But without constant collaboration
and data/instruction supply, no system can work.
Uninterrupted information supply plays the most vital role in
successful project management systems. For the case of
project, several devices are attached together such as Servers,
data storage facility, client machines, networking devices and
so on, all supported by different software. These combinations
of systems and software works round the clock in basic of
24x7x365 days [3],[5],[6].
 Fault tolerance is a technique so that a system perform its
function correctly even in the presence of internal faults. The
purpose of fault tolerance is to increase the dependability of a
system. A failure occurs when a system deviates from the
specified behavior. This type of failure is called an error. Fault
tolerance techniques are used to tolerate fault by redundancy
[4],[7].
 Software faults are commonly called “bugs”. Software
fault tolerance techniques are designed to allow a system to
tolerate software faults that remain in the system after its
development. It provides protection against errors in
translating the requirements and algorithms into a
programming language, but do not provide explicit protection
against errors in specifying the requirements. These
techniques have been used in the aerospace, nuclear power,
healthcare, telecommunications and ground transportation
industries, among others [4],[11].

II. DESIGNING APPROACHES FOR SOFTWARE BASED FAULT

TOLERANCE

Various software based fault tolerant approaches that are
generally rely on design diversity (multiple version) as well as
on single design. In the following sections, we have discussed
about them in a bit elaborative way [4].

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 6 - Dec 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 303

A. Design Diversity Based Software Fault Tolerance

 Within the preview of software fault tolerance concepts,
the design diversity based is also known as multiple version
based software fault tolerance. Design diversity mainly act as
a protection against uncertainty. The main goal of this
technique is to build program versions that fail independently
and with low probability of coincidental failures. Probability
means chances of occurrence or predictability. The calculation
becomes more challenging, when partial information related
to the result is available. Again in some cases, even partial
results are also not available. Bayes’ theorem plays an
important role in solving problems related to uncertainty. Here
we have discussed about the scenario of handling uncertainty
using Bayes’ theorem and mathematical foundation of
it[4],[8],[9].

B. Uncertain or Incomplete Information related to Fault

Tolerant system

 The task of decision making is intimately associated with
every sphere of human life. In fact, the ability to make rational
decisions is a unique characteristic. People have continuously
devised means and ways to enlarge their abilities to cope with
the growing complexity of their decision problems. Making
decisions under uncertainty and imprecision is one of the most
challenging problems of our age, which for a long time have
been tackled by philosophers, logicians, and others. Recently,
AI researchers have given new momentum and flavor to this
idea. Expert systems, decision support systems, machine
learning, inductive reasoning, pattern recognition, are areas
where decision making under uncertainty is of primary
importance. There are several mathematical models of
uncertainty (e.g., Probabilistic functions, fuzzy set, rough set,
theory of evidence and so on)[2],[8].
 In ancient times, the logic was built as the science of
reasoning on human knowledge, and the establishment of
symbolic logic in the early years of the 20th century suggests
the possibility of mechanical processing of this reasoning.
Further, rapid progress of computer in these days enable is to
realize this aim. In such a stream, the researches on
knowledge have been one of the central topics of artificial
intelligence. Originally, the logic has two aspects namely, the
formal one (syntax) and the material one (semantics), and
these two are strongly related with each other. For this reason,
the problem of knowledge representation must be argued from
the point of view of logic [1],[8].
 Very often, while trying to discover knowledge from
information systems, one may face the problem of missing
values or uncertain values. In some cases partial information
related to the results are available and in some other cases,
even partial results are also not available. Several approaches
to solve such type of the problem have been proposed.
However, instead of discussing on extraction and discovery of
knowledge, we have focused on prediction and chance of
occurrence for an event in such type of problem. Thus our

approach consists in removing rules with unknown values or
replacing unknown values with the most common values or to
make an approach for predicting the value using the concept
of Probabilistic approach [8].

C. Mathematical background

 In the 18th-century clergyman's theories on probability
have become a major part of the mathematical foundations of
application development. Search giant Google and Autonomy,
a company that sells information retrieval tools, both employ
Bayesian principles to provide likely (but technically never
exact) results to data searches. Researchers are also using
Bayesian models to determine correlations between specific
symptoms and diseases, create personal robots, and develop
artificially intelligent devices that "think" by doing what data
and experience tell them to do. One of the more vocal
Bayesian advocates is Microsoft. The company is employing
ideas based on probability--or "probabilistic" principles--in its
Notification Platform. The technology will be embedded in
future Microsoft software and is intended to let computers and
cell phones automatically filter messages, schedule meetings
without their owners' help and derive strategies for getting in
touch with other people. If successful, the technology will
give rise to "context servers"--electronic butlers that will
interpret people's daily habits and organize their lives under
constantly shifting circumstances [8],[9],[10].
 Bayesian research is used to make the best gambles on
where I should flow with computation and bandwidth," said
Eric Horvitz, senior researcher and group manager of the
Adaptive Systems & Interaction Group at Microsoft Research.
"I personally believe that probability is at the foundation of
any intelligence in an uncertain world where you can't know
everything" [1],[8].

D. Bayes’ Formula

Let E and F be events. We may express E as
CE EF EF 

For in order for an outcome to be in E, it must either be in
both E and F or be in E but not in F.
As EF and EFC are clearly mutually exclusive, we have

() () ()
(|) () (|) ()
(|) () (|)[1 ()]

C

C C

C

P E P EF P EF
P E F P F P E F P F
P E F P F P E F P F

 

 

  

The above equation states that the probability of the event
E is a weighted average of the conditional probability of E
given that F has occurred and conditional probability of E
given that F has not occurred – each conditional probability
being given as much weight as the event on which it is
conditioned has of occurring [9],[10].

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 6 - Dec 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 304

E. Analysis of Bayes’ Theory

 Toward the end of the year, Intel will also come out with
a toolkit for constructing Bayesian applications. As recently,
improved mathematical models, faster computers and valid
results from experiments have given new credibility to the
school of thought.

 Despite the esoteric symbols, the idea--roughly speaking-
-is simple: The likelihood that something will happen can be
plausibly estimated by how often it occurred in the past.
Researchers are applying the idea to everything from gene
studies to filtering e-mail to noting down about the software
crash and faults. Bayesian theory can roughly be described
with one principle: To predict the future (about the occurance
of fault), one must look at the past [1]. Bayes theorized that
the probability of future events could be calculated by
determining their earlier frequency. Will a flipped coin land
heads up? Experimental data assigns it a value of 0.5. "Bayes
said that essentially everything is uncertain, and one may have
different distributions on probability," said Ron Howard, a
professor in the Department of Management Science and
Engineering at Stanford. He further described his points by an
example, that instead of flipping a coin, if a researcher tossed
a plastic pushpin and wanted to know what the chances were
that it would land flat on its back with the pin pointing up, or,
if it landed on its side or in what direction it would be pointing.
In this case, shape, imperfections in the molding process,
weight distribution and other factors, along with the greater
variety of outcomes, would affect the results. We are working
on this direction to relate this mathematical knowledge in
finding uncertain fault and thus which may light us to propose
a better fault tolerance system.
 The appeal of the Bayesian technique is its deceptive
simplicity. The predictions are based completely on data
culled from reality--the more data obtained, the better it works.
Another advantage is that Bayesian models are self-correcting,
meaning that when data changes, so do the results [9].
Probabilistic thinking changes the way people interact with
computers as well as how the new generation computers and
machines will interact with each other. "The idea is that the
computer seems more like an aid rather than a final device,"
said Peter Norvig, director of security quality at Google.
According to him, "What you are looking for is some
guidance, not a model answer." Search has benefited
substantially from this shift. A few years ago, common use of
so-called Boolean search engines required queries submitted
in the "if, and, or but" grammar to find matching words. Now
search engines employ complex algorithms to comb databases
and produce likely matches. The same ‘if’, ‘and’ and ‘but’
will help to us to analyze and detect our proposed scenario
under the preview of fault tolerance environment[8],[9].
However, analyzing through Bayes’ model, we observed that
few discount the importance of probability, debate on its uses
lingers. Critics periodically assert that Bayesian models
depend on inherently subjective data, leaving humans to judge
whether an answer is correct. And probabilistic models do not

completely account for the nuances in the human thought
process.

III. DESIGNING APPROACHES FOR SOFTWARE BASED

FAULT TOLERANCE

 In the following section, we have mainly focused on
other software based fault tolerant approaches relying on
design diversity (multiple version) and single design. This
section is a kind of review of the existing literature in this
direction [4].

A. The Recovery Block Scheme

With the continuation of this work, we again come back
to literature of fault tolerance computing paradigm. The
Recovery Block Scheme (RBS) technique reduces the
software to crash by examining the checkpoints. It combined
both the checkpoint and restart approach. Checkpoints are
created before a version executes. Checkpoints are used to
recover the state after a version fails to provide a valid
operational starting point for the next version if an error is
detected. In this case, the software executions can be
sequential or parallel depending on the available processing
capability and performance requirement. If all the alternates
are tried unsuccessfully, the component must raise an
exception to communicate to the rest of the system its failure
to complete its function. The following figure (Fig: 1.)
describes about the Recovery Block Scheme [7],[11].

B. The N-Version Programming Scheme

The N-Version programming Scheme is a multiple-
version technique. The decision of output correctness is based
on the comparison of all the outputs. Here task is executed by
several processes or programs, this makes N-Version
Programming Scheme as static technique [4]. Usually, generic
decision algorithm (usually a voter) is used to select the
correct output if one exits and it is the noted difference of this
approach from the Recovery Blocks approach, which requires
an application dependent acceptance test. The following figure
(Fig: 2.) discusses about the N-Version programming Scheme
[7],[11].

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 6 - Dec 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 305

Fig. 1 Recovery Block Scheme Process

Fig. 2 N – Version Programming Scheme Process

C. The N Self-Checking Programming Scheme

The N Self-Checking Programming Scheme uses the
multi software version combined with Recovery Blocks and
N-Version Programming. N Self-Checking programming uses
acceptance tests. Here the versions and the acceptance tests
are developed independently from common requirements [4].
This use of separate acceptance tests for each version is the
main difference of this N Self-Checking model from the
Recovery Blocks approach. The Self-checking program uses
comparison test for error detection. The figure (Fig: 3.) below,
discuss about the process model [7],[11].

D. Consensus Recovery Blocks Scheme

The Consensus Recovery Blocks Scheme uses both N-
Version Programming and Recovery Blocks to improve the
reliability over that achievable by using just one of the
approaches. The use of acceptance test in the Recovery Block
Scheme, suffer from lack of guidelines for their development
and a general proneness to design faults due to the inherent
difficulty in creating effective tests [4]. The use of Voters in
N-Version Programming does not support all the situations
especially when there are multiple correct outputs. In that case
a Voter would declare a failure in selecting an appropriate
output. Consensus Recovery Blocks uses a decision algorithm
similar to N-Version Programming as a first layer of decision.
If this first layer declares a failure, a second layer using
acceptance tests similar to those used in the Recovery Blocks
approach is invoked.

Fig. 3 N Self-Checking Programming Scheme Process

IV. SINGLE-DESIGN SOFTWARE FAULT TOLERANCE
APPROACH:

 Single-Design Software Fault Tolerance is based on
redundancy. Redundancy is applied to the software to detect
and recover from the faults [4].

A. Software Engineering Aspects

In Software Engineering Aspects, modularizing
technique is used to decompose a large problem into small
program for the efficient application of fault tolerance as it is
to the design of a system. The modular decomposition of a
design should consider built-in protections to keep aberrant
component behavior in one module from propagating to other
modules [4].

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 6 - Dec 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 306

B. Error Detection Mechanisms

This fault tolerance technique in single version system uses
two basic properties: self-protection and self-checking. The
self-protection property means that a component must be able
to protect itself from external contamination by detecting
errors which is passed by other to it by other components.
Self-checking means that a component must be able to detect
internal errors and prevent the propagation of those errors to
other components [4].

V. ASSESSMENT OF FAULT TOLERANCE BY FAULT

INJECTION

Software fault injection is the process to test the software
under any circumstances by injecting error. The main reason
for using software fault injection is to ensure the quality of the
software. Fault injection simulates software design faults by
targeting the code [4]. In this situation, the injection considers
the syntax of the software to modify it in various ways with
the goal of replacing existing code with new code that is
semantically different.

VI. CONCLUSION:

This paper deals with an overview on fault tolerance based

system. In case of design diversity based software fault
tolerance system, we observed that uncertainty remains an
important factor. Keeping this factor, we have discussed about
implementing Bayes’ theorem and probabilistic mathematical
model to handle the uncertainty factor. Focusing on this area,
we have given a brief overview on handling uncertain and
incomplete information related to fault tolerance system. We
assume that, once fully developed, the complete model will
give us better efficiency, at least for design diversity based
software fault tolerance system. In rest of this paper, we have
mentioned about other types of fault tolerance systems and
their approaches. This part is a kind of literature review,

which includes, fault tolerant computing schemes that rely on
the single-design as well as on the multiple-design. Further, in
single-design, we have discussed about recovery block, N-
version programming, N self-checking programming scheme.
Lastly, focusing on multiple-design, we have discussed about
software engineering aspects, error detection mechanisms and
fault tolerance by fault injection.

REFERENCES

[1] Aman Gupta, Satyam Mandavalli, Vincent J. Mooney, Keck Voon
Ling, Arindam Basu, Henry Johan and BudiantoTandianus, Lower
Probabilistic Floating Point Multiplier Design, IEEE Computer
Society Annual Symposium on VLSI, Chennai, India, July 4-6, 2011.

[2] B.K. Tripathy and Anirban Mitra, On Rough Equalities and Rough
Equivalences of sets, Rough sets and current trends in computing,
LNCS, Vol. 5306, 2008, pp. 92-102.

[3] Charlie Russel and Sharon Crawford, Planning Fault Tolerance and
Avoidance, Chapter 7 - Microsoft Windows 2000 Server
Administrator's Companion, Microsoft Press.

[4] G. K. Saha, Approaches to Software Based Fault Tolerance – A
Review, Computer Science Journal of Moldova, Vol. 13, No. 3(39),
2005.

[5] Internet site: A fault-tolerant patent with a lot of basic information on
specific ways to detect faults

 (http: //www.freepatentsonline.com/5099485.html)
[6] Internet Site: Wikipedia - the free encyclopaedia: Fault tolerance

Computer architecture, Classes of computers, Fault-tolerant computer
systems –

 ("http:/en.wikipedia.org/w/index.php?title=Fault_tolerant_computer_s
ystem&oldid=502750452")

[7] Jean-Claude Laprie, Jean Arlat, Christian Be´Ounes and Karama
Kanoun, Architectural Issues in Software Fault Tolerance, Laas -
Cnrs, France, Software Fault Tolerance, Edited By Lyu, 1995 John
Wiley & Sons Ltd.

[8] Michael Itzenmacher, Eli Upfal, Probability and computing:
randomized algorithms and probabilistic analysis, Cambridge
University Press, 2005.

[9] Rejimon, T and Bhanja S, Scalable probabilistic computing models
using Bayesian networks, South Florida University, Tampa, FL21
Midwest Symposium on Computers, February 2006.

[10] Sheldon Rose, A first course in Probability, 6th edition, Pearson
Education.

[11] Zaipeng Xie, Hongyu Sun and Kewal Saluja, A Survey of Software
Fault Tolerance Techniques, CiteSeerX (available at internet site:
www.pld.ttu.ee).

