
 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 6- Dec 2013

 ISSN: 2231-5381 http://www.ijettjournal.org Page 333

In-Memory Database Systems - A Paradigm Shift
Mohit Kumar Gupta1, Vishal Verma2, Megha Singh Verma3

1Blogger at www.vedantatree.com
2Department of Computer Science, M L N College, Yamuna Nagar, INDIA

3Department of Computer Science, D A V College for Girls, Yamuna Nagar, INDIA

Abstract — In today’s world, organizations like Google, Yahoo,
Amazon, Facebook etc. are facing drastic increase in data. This
leads to the problem of capturing, storing, managing and
analyzing terabytes or petabytes of data, stored in multiple
formats, from different internal and external sources. Moreover,
new applications scenarios like weather forecasting, trading,
artificial intelligence etc. need huge data processing in real time.
These requirements exceed the processing capacity of traditional
on-disk database management systems to manage this data and
to give speedy real time results. Therefore, data management
needs new solutions for coping with the challenges of data
volumes and processing data in real-time. An in-memory
database system (IMDS) is a latest breed of database
management system which is becoming answer to above
challenges with other supporting technologies. IMDS is capable
to process massive data distinctly faster. This paper explores
IMDS approach and its associated design issues and challenges.
It also investigates some famous commercial and open-source
IMDS solutions available in the market.

Keywords — In-Memory Database System (IMDS), Design issues
and challenges for IMDS, Commercial and open-source IMDS.

I. INTRODUCTION
With the increasing demand of real time data processing,

traditional (on-disk) database management systems are in
tremendous pressure to improve the performance. With the
increasing amount of data, which is expected to touch 40ZB
(1ZB = 1 billion terabytes) by 2020, means 5247 GB of data
per person [1], and with traditional DBMS architecture, it is
becoming more and more challenging to process the data and
to produce analytical results in almost real time. For on-disk
databases, disk I/O operations are the main bottleneck, which
are very slow operations and can’t be optimized beyond a
limit being mechanical in nature. Although traditional on-disk
DBMS have tried to improve on this by introducing various
caching techniques to cache the frequently accessed data,
however, it comes at the cost of synchronization of cache with
disk and vice versa and to implement various complex logic to
manage transaction and resources, which itself pose as a
limitation to performance. So what is the way forward?

Here comes the in-memory database system concept, which
actually changed the whole architecture paradigm for the
database management system. An in-memory database system
or main-memory database system is a breed of database
management system that stores data entirely in main memory
instead of keeping it on disk [2]. With decreasing cost of main
memory, and advance technological innovations, it becomes
quite feasible to store large amount of data in main memory.

Once data is stored in main memory, speed of reading and
writing the data will be improved drastically as it eliminates
disk I/O operations. A POC done by McObject shows; that in-
memory database supports read at 4x speed and write at 420x
speed than traditional DBMS [3]. It is a big d3fference if we
can transform this benefit in real time data processing and
hence in managing and processing the big data. Further,
having all data in main memory, now there is no need to
implement complex caching logics and hence caching
overhead is also eliminated. This is how IMDSs are moving to
win over traditional databases for speed challenges.

Applications of in-memory databases will be in all domains
that require real-time performance and very low latency like
weather forecasting, trading application, social networking
websites, artificial intelligence etc. Another important use for
in-memory database systems is in real-time embedded
systems such as IP network routing, telecom switching,
industrial control etc.

II. ARCHITECTURE OVERVIEW
Main architectural attribute in IMDS is that whole design is

geared towards using the main memory for data storage,
instead of using disks. Fig. 1 shows a very simply high level
design of IMDS.

This is a major paradigm shift in DBMS design approach,
which triggers many other design optimizations. Now DBMS
needs not to be worried about optimizing the disk I/O
operations, and about caching like techniques for these
optimizations. Whole designed will be geared to have high
performance data access, manipulation and analysis relying on
main memory data store. Since IMDS involves no disk
oriented algorithms, therefore it frees the database design to
leave typical B-Tree kind of data structure and go for better
main memory access friendly data structures like T-Tree, and
possibly open the arena to invent better in-memory storage
data structures. Further, Query optimization is now focused on
improving the in-memory data structure and algorithms to
execute the query, instead of improving the I/O kind of
operations, which are having mechanical limitations.
Overhead to manage the concurrent transactions will be lesser,
because data access is much faster and hence the locks will be
freed comparatively faster.

As whole data is loaded in-memory, so the distributed data
management nodes can also use the shared main memory
locations or high speed WAN network to enable the virtually
one data location and hence faster data access even in case of
distributed nodes [4]. Moreover, having all data in main

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 6- Dec 2013

 ISSN: 2231-5381 http://www.ijettjournal.org Page 334

memory enable the design to utilize the extended capacity of
memory pointers on 64 bit systems.

A common misconception is that traditional database
systems can give the same performance if we change the data
store from disk to main memory. And that IMDS is nothing
but a traditional database having data store in RAM only.
However, it is not true. Reason is that it is not only the data
access operations which are getting fast with main memory
based design, but there are many other optimizations which
are possible now. As discussed earlier, now database systems
need not to worry about complex caching and synchronization
algorithms. Further, we can redesign and optimize data
structures, indexes approach, query execution rules and
algorithms considering main memory data store; which would
be quite different than traditional databases [3].

A. Few Design Highlights

1) Client/ server architecture: Some IMDSs use client/
server architecture, where server can be run on powerful
machines with multi-core processors and vast amounts of
RAM and multiple clients can interact with server for requests.
Even when residing on the same computer, client and server
processes communicate via inter-process communication
messaging. Other IMDSs use an in-process architecture in
which the database system runs entirely within the application
process; instead of separate client and server processes. Later
is useful in especially useful in embedded applications. In-
process architecture is simpler, which means it has a smaller
code size (shorter execution path). Simpler code is also less
prone to defects. In-process design eliminates inter-process
communication, resulting in lower latency. In-process IMDSs
further accelerate performance and reduce complexity by
eliminating server tasks such as managing sessions and
connections, and allocating and de-allocating resources.
However former, i.e. Client/server is an enterprise DBMS
kind of design. It is useful in right sizing the database capacity
and performance by installing the server software on a more
powerful computer, and clients may be on lesser powerful
nodes. As a result, it is capable to manage resources in better
way and serve requests in optimized manner even with limited
resources.

2) Shared Nothing architecture (SN): The ‘Shared nothing
architecture’ principle is that every database node work
absolutely independently without having any dependency on
other nodes. In case of dependency, failure at one node can
affect other nodes also and hence bring down all or most of

the database system. SN helps in achieving high availability in
case of node failure, as control can be routed to other active
node without any dependency.

3) Partition aware databases: It is an approach where data
storage is managed by horizontal partitioning i.e. tables are
partitioned in rows and placed in different servers where these
are mostly required. One of criteria for partition could be
based on demography. Use of horizontal partitioning results in
reduced number of rows in a table and hence less overhead of
indexing and searching. It also means having data in a node
which is near to its consumer. However, there could be a
problem when some operation needs joins on partitioned table
and other tables. Now if other tables or data are present in
different node, a distributed join will be slower. To mitigate
this problem, a design approach is to make database aware
that which tables or data should be collocated on a node. Once
database is aware about it, it will make sure that related data
should be stored on single node (replication may include
replicating whole data set to other nodes to avoid single point
of failure). Hence, now the joins will take place on single
node and much faster without the overhead of distributed data.

4) Scalable infrastructure: Having SN architecture in place,
it is possible for any node from available set to cater the
request. Hence, it is also easily possible to add any number of
nodes as and when required. Architecture can support the
automatic replication of data to this newly added node and
hence making it fully functional to cater the requests. In the
same way, nodes can also be removed easily if load is
decreased. The high availability distributed architecture will
automatically ensure that no new request is being sent to this
node and will be redirected to other available nodes only. All
this means, a huge saving in infrastructure cost if hosting
platform is cloud, where provisioning of resources to scale up
or down can be very fast on demand. This also means that DB
can scale linear just by adding more nodes horizontally, which
is much easy than adding or removing capacity vertically as in
case of traditional database systems.

5) Disaster recovery: Being highly available systems, it is
very easy to make disaster recovery itself. When data is
available on multiple nodes, it becomes obvious to recover
any failed node from other available nodes. However, another
design principle applied is to provide disk storage backup for
systems logs. Here backup is done in asynchronous processes
so that it won’t affect the main database performance. Users
may be able to choose the backup options from various

Fig. 1 High Level Design of IMDS

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 6- Dec 2013

 ISSN: 2231-5381 http://www.ijettjournal.org Page 335

available options like backup to disk on selective nodes,
replication to other nodes and may be more in future.

6) Distributed data with WAN based clustering support:
For a worldwide application, different part of database would
be required in different geography. One of the design
possibilities in IMDS is to partition the data based on data
required at a particular node. So node will host the data which
is most required there. Other commonly accessed data tables
will be replicated in real time basis. However, in case, if data
hosted at other nodes is also required for some specific
scenarios, all the nodes can act as single database by
exploiting the high speed network power of LAN and
customer will not feel the difference of having distributed
database across the nodes. This is another valuable design
element, which can help in managing the storage capacity and
to manage the amount of data at a particular node.

B. Challenges for IMDS
Despite the promising design attributes for high

performance, IMDS face some challenges in compare to
traditional on-disk databases. While the robust traditional
database systems, as a matter of design based on hard disk,
guarantee atomic, consistent, isolated and durable (ACID)
nature of the transactions. IMDSs have various challenges
with assuring the durable characteristic due to its RAM-based
design. Different products are offering diverse ways to cope
with this issue. To achieve durability, in-memory database
systems are applying the following techniques [5]:

1) Persistent main memory: Latest technological
developments in main memory arena like NVRAM (Non-
Volatile RAM) or battery powered main memory enable the
scenario where data in main memory will not be lost.

2) Transaction logging: With transaction logging, every
transaction will be logged to a persistent store, which will
enable the roll-forward mechanism to restore the database in
case of power failure. To avoid making transaction logging
the bottleneck in overall performance, different design
strategies are to write the logs first in stable memory (faster
than disk write) and then to disk in asynchronous processes
and hence the main database operations will not wait for the
logging to be completed.

3) High availability implementation: High availability
implementation is another design approach to address this
problem. High availability means replicating the data to other
available nodes in real time. That will enable to create the
copies of data in almost real time and hence will reduce the
probability of complete data failure. In case, if any one node
goes down, other node will take over the request and will
process it.

So various approaches given above are answer to the
challenge of volatile main memory and this list is increasing
very fast with more and more design and technical
innovations in this area.

III. IMDS SOLUTIONS AVAILABLE IN MARKET
In recent years, variety of IMDS solutions (both

commercial and open source) made available in market from
giant players of database market such as IBM, Oracle, SAP,
VMWare etc. Although all of them share the capability to
maintain the database in main memory and supports industry
standards such as SQL for data processing, they offer different
set of features. Following sub-sections investigates some
famous commercial and open-source in-memory databases:

A. Commercial IMDS

1) TimesTen: TimesTen [6] is in-memory relational
database system from Oracle with features like durability,
query optimization, recoverability etc. It offers instant
responsiveness and very high throughput required by today’s
real time applications such as telecom, capital markets and
defence. It also provides multiple interfaces such as JDBC,
ODBC and other SQL APIs.

2) SolidDB: SolidDB [7] is a hybrid disk/ in-memory
relational database system from IBM. It offers extreme speed,
availability and adaptability required for mission-critical
applications. There are a number of deployments of solidDB
in telecommunication networks, enterprise applications and
embedded software and systems.

3) extremeDB: extremeDB [8] from McObject is an
extremely fast in-memory database system. It is designed
explicitly for real-time applications and for embedded systems
such as set-up boxes, telecom/ networking devices, industrial
control system etc. It states to offers unmatched performance,
reliability and development flexibility.

4) SQLFire: SQLFire [9] is an in-memory distributed SQL
database from VMware vFabric. It states to offer high
throughput, dynamic & linear scalability, and continuous
availability of data. It is designed by utilizing the research and
development done on in-memory cache ‘GemFire’ by same
vendor and hence is quoted to be very mature and feature rich.

5) HANA: HANA [10] is distributed in-memory relational
database system from SAP. It supports features like column-
based storage and queries, data compression and parallel
processing which makes possible forecasting, planning,
analysis and simulation in real or near to real time. It states to
offer support for complex queries and high performance for
complex queries.

B. Open-source IMDS

1) SQLite: SQLite [11] is an open-source relational in-
memory database engine. It is small, fast and reliable DBMS
suited for embedded systems such as cellphones, PDAs, set-up
boxes etc. It is also used for local/ client storage in web
browsers. However, it has limited support for complex SQL
queries, triggers and views.

2) CSQL: CSQL [12] is another open-source main-
memory relational database system developed at
sourceforge.net. It is designed to provide high performance on
simple SQL queries and DML statements that involve only

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 6- Dec 2013

 ISSN: 2231-5381 http://www.ijettjournal.org Page 336

one table. It supports to work in embedded as well as
client/server mode. Apart from acting as relational storage
engine, it can also be used as a cache for existing disk-based
commercial databases.

3) MonetDB: MonetDB [13] is an open-source column-
oriented main-memory database management system
developed at the National Research Institute for Mathematics
and Computer Science in the Netherlands. It was designed to
provide high performance on complex queries in large
databases, such as combining tables with hundreds of columns
and multi-million rows. MonetDB is one of the first database
systems to focus its query optimization. It has been
successfully applied in high-performance applications for data
mining, OLAP, XML Query, GIS etc.

IV. CONCLUSIONS
When it comes to processing large amounts of data with

low latency, in-memory database seems to be a definitive
answer and a turning point in design strategies. They offer so
many advantages and it is only a matter of time when we shall
see many new innovations to address their current challenges
or limitations. With in-memory replicated data nodes, IMDS
provides a very efficient way to support highly available and
performance oriented database management systems. With
continuous improvements in main memory technology and
high speed networks, future will support the ‘store anywhere,
use anywhere’ with high processing speed and virtually one
database base system accessible anywhere in world. If all
knowledge accumulated in world can be processed and used at
high speed, it will be a definitive revolution in many high-tech
fields like Artificial Intelligence, various forecasting services
and so on.

REFERENCES
[1] IDC Digital Universe Study. (2012) The Digital Universe in 2020: Big

Data, Bigger Digital Shadows, and Biggest Growth in the Far East.
[Online]. Available: http://idcdocserv.com/1414.

[2] Hector Garcia-Molina, and Kenneth Salem, “Main Memory Database
Systems: An Overview”, IEEE Transactions on Knowledge And Data
Engineering, Vol. 4, No. 6, pp. 509-516, Dec. 1992.

[3] Main Memory vs. RAM-Disk Databases, McObject LLC. (2003)
[Online]. Available:
http://www.mcobject.com/130/EmbeddedDatabaseWhitePapers.htm.

[4] Y. Huang, Y. Zhang, X. Ji, Z. Wang, and S. Wang, “A Data
Distribution Strategy for Scalable Main-Memory Database”, Advances
in Web and Network Technologies, and Information Management,
Lecture Notes in Computer Science, Vol. 5731, pp. 13-24, 2009.

[5] A. Gorine, “Building durability into data management for real-time
systems”, Boards & Solutions, Sep. 2004.

[6] Oracle TimesTen In-memory database. [Online]. Available:
http://www.oracle.com/technetwork/database/database-
technologies/timesten/overview/timesten-imdb-086887.html.

[7] IBM SolidDB. [Online]. Available: http://www-
01.ibm.com/software/data/soliddb/.

[8] McObject – extremeDB in-memory database systems. [Online].
Available: http://www.mcobject.com/extremedbfamily.shtml.

[9] vFabric SQLFire. [Online]. Available:
http://www.vmware.com/in/products/vfabric-sqlfire/overview.html.

[10] SAP HANA. [Online]. Available: http://www.saphana.com.
[11] SQLite. [Online]. Available: http://www.sqlite.org/mostdeployed.html.
[12] CSQL. [Online]. Available: http://csql.sourceforge.net/.
[13] MonetDB. [Online]. Available: http://www.monetdb.org/Home.

AUTHORS
Mohit Kumar Gupta is a Software
Professional having 12+ years of experience
with various Organizations in Financial
Services, Public Finance and IT Services
domains. He is having Masters degree in

Computers Applications and another Masters degree in
Business Administration. His interest areas are Open Sources,
Framework Development, Research in new technologies,
Architecture and Designing. He is blogger at
http://www.vedantatree.com. His complete profile can be
found at http://www.linkedin.com/in/mohitkgupta.

Vishal Verma is an Assistant Professor at
Department of Computer Science, M L N
College, Yamuna Nagar, Haryana (INDIA).
He received MCA in 2001 from Kurukshetra
University, Kurukshetra (INDIA) and M Phil
(Computer Science) in 2008 from Madurai
Kamaraj University, Madurai (INDIA). His

total teaching experience is more than 12 years and is
presently pursuing PhD (Computer Science) at Maharishi
Markandeshwar University, Mullana, Ambala (INDIA). His
current research focus is on Rendering Techniques, Image
Processing and latest trends in Database Systems.

Megha Singh Verma, received M.Tech.
degree in Computer Science and Engineering
from Maharishi Markandeshwar University,
Mullana, Ambala (INDIA) in 2011. She is
presently working as Assistant Professor at
Department of Computer Science, D A V
College for Girls, Yamuna Nagar, Haryana

(INDIA). She has more than 2 years of teaching experience
and her areas of interest are Database Systems and Computer
Graphics.

