Analysis of ECG Signal Compression Technique Using Discrete Wavelet Transform for Different Wavelets

Anand Kumar Patwari1, Ass. Prof. Durgesh Pansari2, Prof. Vijay Prakash Singh3
1PG student, Dept. of Electronics and Communication, RKDF college of Engineering, Bhopal, India
2Asst. Professor, Dept. of Electronics and Communication, RKDF college of Engineering, Bhopal, India
3H.O.D., Dept. of Electronics and Communication, RKDF college of Engineering, Bhopal, India

ABSTRACT

This paper presents the ECG compression technique using wavelet transform corresponds to the different wavelets. There are so many techniques are popular for ECG compression. The wavelet based techniques are most popular and conveniently implementable. Here in this paper, we have performed the ECG compression using the lossless coding technique. Further we have analyzed the results for the different wavelet belong to the different families, on the basis of different parameters i.e. PRD, Compression Ratio and finally the conclusion is made from the obtained results, which are given in this paper.

KEYWORDS

Root mean square difference (PRD), Compression ratio (CR), Discrete wavelet transform (DWT)

I. INTRODUCTION

The “Electrocardiogram” (ECG) is an invaluable tool for diagnosis of heart diseases\cite{1}. The volume of ECG data produced by monitoring systems can be quite large over a long period of time and ECG data compression is often needed for efficient storage of such data\cite{2}.

In a similar sense, when ECG data need to be transmitted for telemedicine applications, data compression needs to be utilized for efficient transmission\cite{3}. While ECG systems are found primarily in hospitals, they find use in many other locales also.

ECG systems are used by paramedics responding to accident scenes in emergency vehicles. They are also used by clinicians at remote sites. Certain military and/or space missions also employ ECG. A growing area of use for ECG is the 24-hour holters that are leased by consumers. These portable ECG devices record and store the data for subsequent interpretation by a doctor.

To record ECG signal waveform, a large amount of data should be saved\cite{1-5}. To reduce the space for data storage, some compression must be used, but only if the difference between decompressed - reconstructed signal and the original one is minimal, i.e. if reconstructed signal is not distorted and if cardiologist can obtain the same diagnosis from reconstructed signal as if he would obtain it from original signal\cite{5-7}.

There are several ways to obtain compression of non - stationary signals and almost all of them use transform coding. In the given techniques in this paper the compression of the signal is obtained by Discrete Wavelet Transform (DWT)\cite{7,8}.

The main objective associated with the ECG compression is to obtain the Good compression ratio with the less error after
reconstruction and the clear visibility of the ECG component, subjected for the further observation[6-10].

II. ELECTROCARDIOGRAM (ECG)

An electrocardiogram is simply a measure of voltage changes in the body. Any large electrical event can be detected. The electrically-active tissues in the body are the muscles and nerves. Small brief changes in voltage can be detected as these tissues ‘fire’ electrically[1,5].

The heart is a muscle with well-coordinated electrical activity, so the electrical activity within the heart can be easily detected from the outside of the body with the help of ECG. A normal heartbeat or cardiac cycle has P wave, a QRS complex and a T wave. A small U wave is sometimes visible in 50 to 75% of ECGs.

ECG compression techniques can be categorized into: direct time-domain techniques; transformed frequency-domain techniques and parameters optimization techniques [1, 9]. In our work we have utilized the parameter optimization technique. We set the optimized PRD before the quantization and encoding of the signal.

The strategy for compressing data must fulfill the following requirements [9]:

Information preservation: Due to diagnostic restriction, it is imperative that the information found in the original data is preserved after compression.

Control of compression degree: Another preference is the ability to control the amount of data compression. Recent information is preferably stored in a data exact form with low degree of compression.

Complexity Issue: Due to limited processing capacity of the pacemaker, an algorithm for compressing data has to have low complexity. This fact rules out many compression techniques involving extensive calculation, which could be potential candidates in other circumstances.

IV. PERFORMANCE PARAMETERS

1) Compression Ratio: The compression ratio (CR) is defined as the ratio of the number of bits representing the original signal to the number required for representing the compressed signal.

2) Root Mean Square Error: The root mean square error (RMS) is used as an error estimate. The RMS is given as

\[\text{RMS} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (x(n) - \hat{x}(n))^2} \]
where \(x(n) \) is the original signal, \(\hat{x}(n) \) is the reconstructed signal and \(N \) is the length of the window over which the RMS is calculated.\[1,2,4-6,9,10\]

3) **Root-mean-square Difference:** The distortion resulting from the ECG processing is frequently measured by the percent root-mean-square difference (PRD), which is given by:

\[
PRD = \sqrt{\frac{\sum_{n=1}^{N} (x(n) - \hat{x}(n))^2}{\sum_{n=1}^{N} x^2(n)}}
\]

As the PRD is heavily dependent on the mean value, it is more appropriate to use the modified criteria:

\[
PRD_1 = \sqrt{\frac{\sum_{n=1}^{N} (x(n) - \bar{x} - \hat{x}(n))^2}{\sum_{n=1}^{N} (x(n) - \bar{x})^2}}
\]

where \(\bar{x} \) is the mean value of the signal.\[1,2,4-6,8,9\]

V. THE DISCRETE WAVELET TRANSFORM

There is a number of time–frequency methods are currently available for the high resolution signal decomposition. But there is many of complexities and drawbacks are associated with them which are minimized in the DWT.\[1-4,5-7,9\] The DWT is the appropriate tool for the analysis of ECG signals. The WT improves upon the STFT by varying the window length depending on the frequency range of analysis. This effect is obtained by scaling (contractions and dilations) as well as shifting the basis wavelet.

The key issues in DWT and inverse DWT are signal decomposition and reconstruction, respectively. The basic idea behind decomposition and reconstruction is low-pass and high pass filtering with the use of down sampling and up sampling respectively. The result of wavelet decomposition is hierarchically organized decompositions. One can choose the level of decomposition \(j \) based on a desired cutoff frequency.

[Fig. 3 A three-level two-channel iterative filter bank (a) forward DWT (b) inverse DWT]

VI. DWT BASED ECG COMPRESSION ALGORITHMS

As described above, the process of decomposing a signal \(x \) into approximation and detail parts can be realized as a filter bank followed by down-sampling (by a factor of 2).\[1,9\] The impulse responses \(h[n] \) (low-pass filter) are derived from the scaling function and the mother wavelet. This gives a new interpretation of the wavelet decomposition as splitting the signal \(x \) into frequency bands. In hierarchical decomposition, the output from the low-pass filter \(h \) constitutes the input to a new pair of filters. This results in a multilevel decomposition. The maximum number of such
decomposition levels depends on the signal length. For a signal of size N, the maximum decomposition level is $\log_2(N)$.

The process of decomposing the signal x can be reversed, that is given the approximation and detail information it is possible to reconstruct x. This process can be realized as upsampling (by a factor of 2) followed by filtering the resulting signals and adding the result of the filters. The impulse responses h' and g' can be derived from h and g. If more than two bands are used in the decomposition we need to cascade the structure.

VII. METHODOLOGY

The compression technique proposed in our work is based on the DWT. We obtained the transformed coefficient using DWT and applied the thresholding and obtained the PRD. PRD provides a pre estimation of the overall error in the signal after compression.

Further the threshold is updated until we get the used defined PRD i.e. UPRD. Then we performed the quantization of the obtained coefficients in to the pre decided number of levels.

Finally the thresholded coefficients are coded by Run length encoding followed by Huffman encoding and the significant coefficients are encoded separately using the arithmetic encoding. The compression ratio is evaluated for the compressed signal.

During the reconstruction decoding is performed by the reverse processing. The PRD is calculated for the reconstructed signal that is given as QPRD. The QPRD is compared with the PRD, as it is desired that the PRD should not change more than 10%.

The results are evaluated for the different different wavelets and the result is tabulated and analyzed.

VIII. RESULTS AND ANALYSIS

We have taken the ECG signal from the well known data base of MIT BIH Arrhythmia. ECG signal (102.dat) is sampled at 360 Hz, so it contains 360 samples per second. We have taken the 1 minute ECG signal, which corresponds to 21600 samples. Each sample corresponds to the 11 bits.

The PRD is the root mean square difference for the signal after thresholding. The QPRD is the root mean square difference of the reconstructed signal after compression. CR is the compression ratio of the compressed ECG.

<table>
<thead>
<tr>
<th>Wavelet</th>
<th>Prd</th>
<th>Qprd</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>db1/haar</td>
<td>6.4946</td>
<td>6.5886</td>
<td>8.9391</td>
</tr>
<tr>
<td>db2</td>
<td>6.4888</td>
<td>6.5648</td>
<td>12.7168</td>
</tr>
<tr>
<td>db3</td>
<td>6.4534</td>
<td>6.5554</td>
<td>15.6275</td>
</tr>
<tr>
<td>db4</td>
<td>6.4891</td>
<td>6.6019</td>
<td>16.7371</td>
</tr>
<tr>
<td>db5</td>
<td>6.4576</td>
<td>6.5342</td>
<td>17.6944</td>
</tr>
<tr>
<td>db6</td>
<td>6.4695</td>
<td>6.5782</td>
<td>18.0186</td>
</tr>
<tr>
<td>db7</td>
<td>6.4913</td>
<td>6.6238</td>
<td>19.0624</td>
</tr>
<tr>
<td>db8</td>
<td>6.4960</td>
<td>6.6693</td>
<td>19.7802</td>
</tr>
<tr>
<td>db9</td>
<td>6.4736</td>
<td>6.5660</td>
<td>20.5607</td>
</tr>
<tr>
<td>db10</td>
<td>6.4869</td>
<td>6.5930</td>
<td>20.7330</td>
</tr>
<tr>
<td>db11</td>
<td>6.4814</td>
<td>6.5953</td>
<td>21.1765</td>
</tr>
</tbody>
</table>
Fig 8.1 Graph between the compression ratio and db wavelet order

Table 8.2 Parameter variation with increasing order of Symlets wavelet

<table>
<thead>
<tr>
<th>Wavelet</th>
<th>Prd</th>
<th>Qprd</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>sym2</td>
<td>6.4888</td>
<td>6.5648</td>
<td>12.7168</td>
</tr>
<tr>
<td>sym3</td>
<td>6.4534</td>
<td>6.5554</td>
<td>15.6275</td>
</tr>
<tr>
<td>sym4</td>
<td>6.4928</td>
<td>6.5826</td>
<td>15.9292</td>
</tr>
<tr>
<td>sym6</td>
<td>6.4976</td>
<td>6.5955</td>
<td>16.8224</td>
</tr>
<tr>
<td>sym7</td>
<td>6.4758</td>
<td>6.5809</td>
<td>17.2926</td>
</tr>
<tr>
<td>sym8</td>
<td>6.4628</td>
<td>6.5312</td>
<td>17.4142</td>
</tr>
<tr>
<td>sym9</td>
<td>6.4985</td>
<td>6.5773</td>
<td>17.9186</td>
</tr>
<tr>
<td>sym10</td>
<td>6.4902</td>
<td>6.5573</td>
<td>18.5220</td>
</tr>
<tr>
<td>sym11</td>
<td>6.4570</td>
<td>6.5440</td>
<td>19.5074</td>
</tr>
<tr>
<td>sym12</td>
<td>6.4901</td>
<td>6.5645</td>
<td>20.0608</td>
</tr>
</tbody>
</table>

Fig 8.2 Graph between the compression ratio and symlets wavelet order

Fig 8.3 Original ECG signal

Fig 8.4 Reconstructed ECG signal after compression using db1 wavelet

Fig 8.5 Reconstructed ECG signal after compression using db3 wavelet
From the above results we have found that the variation in the PRD and QPRD is almost in the permissible range. The difference between two PRD values is less than 0.1 or 10% for all the wavelets as desired. Yet the shape of the signal is some poor for the very lower order wavelets, but in terms of the signal shape also we are getting improvisation with the increment in the wavelet order. Further we have found that the compression ratio is increasing with the increment in the order of the wavelet. The increment is almost exponential.

IX. CONCLUSION AND FUTURE WORK
In our study we have seen the ECG compression using wavelet transform for the different wavelets. The results is obtained and analyzed. From the obtained results and by its analysis, we found the conclusion that it is much better to use the higher order wavelet for the ECG compression. It is not only good for the signal quality but also beneficial to get higher compression ratio for the compressed ECG signal. The increment is almost exponential, which can results in high improvisation in the compressibility of the algorithm.

In the future we may try to find some other techniques to get more improvisation in the compression ratio and PRD for the ECG signal compression.

REFERENCES

