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Abstract - The aim of the paper concerns the classification of the point cloud using a suitable method based on the Random 

Forest algorithm. In addition, thanks to the use of specific sensors, such as Airborne Laser Scanning (ALS), it is possible to 

obtain a georeferenced point cloud in a short time, which makes it possible to represent and model urban areas not only 

through a graphic representation but also through a semantic one. The development of a suitable methodology made it possible 

to automatically classify a point cloud acquired on an urban scene acquired with a “Leica City Mapper” sensor over the city 

of Bordeaux (France). The quality of the point cloud classification was evaluated using appropriate performance indices 

(Overall Accuracy and F1 measure), which showed encouraging results on the quality of the developed method.  
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1. Introduction 
The 3D and semantic modelling of urban areas is an 

interesting and active research topic, as 3D digital models of 

cities are becoming increasingly common for urban 

management as a consequence of the growing number of 

people living in cities [1]. Nowadays, there are an increasing 

number of techniques and methods for generating 3D models 

of urban scenes (US) [2-4]. In particular, the use of hybrid 

aerial sensors consisting of airborne laser scanning (ALS) 

and nadiral and/or oblique cameras makes it possible to 

obtain 3D colored point clouds of urban areas in a fast, 

accurate and detailed manner. Optical and LiDAR systems 

connected with sensors based on the integration of Global 

Navigation Satellite System (GNSS) and Inertial Navigation 

Systems (INS) enable a georeferenced point cloud to be 

obtained quickly [5]. Starting the point cloud, a very 

important aspect and one that plays an important role in the 

management of geospatial data, concerns the classification of 

the point cloud, i.e. taking the entire data as input and 

providing it as output, the class to which the initial input 

belongs. In other words, segmentation aims to classify each 

point into a specific part of the point cloud [6]. In recent 

years, several approaches were proposed to classify the point 

cloud and based on the use of Machine Learning (ML) and 

Deep Learning (DL). ML and DL fields of application of 

Artificial Intelligence (AI), based on the development of 

algorithms that allow computers to make decisions based on 

initial input data, called training data. Specifically, DL is 

considered a branch of ML that is based on the use of 

Artificial Neural Networks (ANNs) with two or more layers 

(hidden layers) to process information in a non-linear manner 

[7]. These learning methodologies are generally 

distinguished into two approaches [8], Supervised Approach 

and Unsupervised Approaches. In the supervised approach, 

the Random Forest (RF) algorithm is widely used in the 

classification of the point cloud. RF is an algorithm that 

combines the output of several decision tree structures to 

reach a single result whose ease of use and flexibility have 

favored its adoption, as it handles both classification and 

regression problems [9]. RF take as input some manually 

annotated parts of the point cloud together with so-called 

“features”, attributes of a geometric and/or radiometric nature 

specially selected by the operator to facilitate the learning and 

distinction of the classes requested. RF randomly generates 

several training subsets through the bootstrap sampling 

method and selects the characteristics of the dataset 

according to the Gini coefficient to construct a decision tree 

for each training set to construct a decision tree for each 

training set; after entering the test sample, the expected result 

is obtained by calculating the results obtained from all 

decision trees [10]. The RF algorithm was successfully used 

in several classification applications. For example, Ni et al., 

2020 [11] describe a workflow that, starting from the point 

cloud derived from airborne laser scanning (ALS), analyses 

an automation process consisting of the sequential 

segmentation steps of the point cloud, the subsequent 
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extraction of geometric features and their RF-based selection 

and classification, and post-processing. Lu et al. 2022 [12] 

integrated various data sources and employed a random forest 

classifier to address spectral similarities between fragmented 

glacier coverage and surrounding rock and soil, as well as 

impacts of mountain ranges, cloud cover, and seasonal 

snowfall shadows during classification tasks.  

 

Aljumaily et al., 2023 [13] introduce the point cloud 

voxel classification (PCVC) method, an automated, two-step 

solution for classifying terabytes of data without 

overwhelming the computational infrastructure; the RF 

algorithm is then used for the final classification of the object 

within each voxel using four categories: ground, roof, wall, 

and vegetation. Therefore, taking into account research 

developments in the field of point cloud classification, a 

multiscale method based on the use of ML algorithms applied 

to cultural heritage is discussed in the paper. In fact, the 

experiments in the literature mainly concern point clouds 

acquired from ground platforms and UAVs [14, 15], while 

the experimentation conducted concerns the acquisition of 

geospatial data from aerial platforms using hybrid sensors. 

The algorithms experimented were evaluated on a dataset 

where the point cloud investigated has a significantly lower 

density than the datasets present in the literature. 

 

2. ML Classification Algorithms 
Many algorithms have been used for ML classification 

up to the current use of AI and, among the most tested, are 

Edge-Based, Region Growing, Model Fitting, Hybrid 

Method and ML applications [16]. In particular, Edge-Based 

segmentation algorithms involve two main steps, i.e. the 

localisation of the edge (defined with respect to specific 

geometric properties) with the aim of delineating the 

boundaries of two different regions and the grouping of 

points within the same area, arriving at the final segment. An 

implementation of this methodology was proposed by Wang 

et al., 2009 [17], who applied the segmentation algorithm 

directly on the point cloud with the aim of locating buildings 

and their separation from vegetation and other layers.  

 
In Region Growing segmentation, the algorithm is based 

on the analysis of one or more points (seed points) that have 

common characteristics or features, generating regions that 

grow around neighboring points with similar characteristics. 

The Region-Based methods are divided into Bottom-Up 

approaches, where starting from a few seed points, segments 

grow on the basis of assigned similarity criteria, and Top-

Down approaches, where all the points are assigned to a 

single region or surface, based mainly on the identification of 

the seed points and the identification of the features to be 

associated with the surface, which will subsequently be 

enlarged to include neighboring points that respect the 

aforementioned features. In the Model Fitting algorithm 

approach, artificial objects can be decomposed using simple 

geometric primitives such as circles, planes, cylinders, etc., 

by fitting these primitive shapes within the point cloud.  

 

The main model fitting algorithms used are HT (Hough 

Transform) and RANSAC (RANdom SAmple Consensus) 

[18, 19]. In Hybrid Methods, several methods are combined 

in order to exploit the potential of each previous 

methodology. Tutzauer et al., 2019 [20], for example, 

propose a feature-based approach for semantic mesh 

segmentation in an urban scene, using manually computed 

features and features developed by a 1D convolutional neural 

network (CNN) typical of DL applications. Through the 

ML/DL algorithms, typical of AI-related applications, a 

training process can be initiated in order to develop 

supervised and unsupervised approaches for the manual or 

automatic classification of a large amount of input data, 

respectively. More specifically, algorithms for classifying 

urban areas and data obtained from ALS sensors 

classification are rather complex due to the variability and 

density of the point cloud in different urban areas. In Zeybek, 

2020 [15], an approach divided into three main steps and 

based on the RF algorithm is proposed. Xue et al., 2020 [10] 

propose the weakly correlated Random Forest by first 

filtering the cloud through ICSF (Improved Cloth Simulation 

Filtering) and then introducing the MIC (mutual information 

coefficient) parameter, constructing an RF with a higher 

correlation between the various decision trees. Ozdemir et al., 

2019 [21] different ML and DL algorithms for the 

classification of two-point clouds are evaluated, such as OvO 

ML classifier, BiLSTM, 1D CNN, 2D CNN, and DL 

classifiers. Under the assumption of point clouds 

characterized by density variations, presence of noise and 

high complexity, Yang et al., 2015 [22] and Li et al., 2019 

[23] propose a robust and robust approach for the 

segmentation of point clouds obtained via MLS, combining a 

novel region growing approach and a multi-size super voxel-

based segmentation. 

3. Data 
The point clouds used in the experimentation are the old 

city of Bordeaux, in the region of New Aquitaine (France) 

and in particular in the districts called “Saint Pierre”. The 

point cloud was obtained from the “Leica CityMapper” 

hybrid sensor (Leica Geosystems AG—Part of Hexagon AB, 

Heerbrugg, Switzerland), which is specifically designed for 

airborne urban mapping. This sensor is equipped with an 

airborne laser scanner (ALS) and five cameras (one nadir and 

four oblique) capable of obtaining images of the same target 

from different angles. In particular, the ALS sensors produce 

a dense point cloud of the object: the greater the density of 

the points, the greater the level of detail of the scanned object. 

Among the parameters that determine the density of the point 

cloud are the scanning frequency (number of pulses or beams 

emitted by the laser instrument in 1 second) and the scanning 

mechanisms (oscillating, sinusoidal, fibre optic, rotating 

polygon, etc.). 
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Fig. 1 3D point cloud of the old city of Bordeaux 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Pipeline of the developed method. 

The definition of the density level of the resulting point cloud 

determines the pin-pointing activity of the flight mission with 

ALS sensors. The point cloud consists of approximately 13.5 

million points with a density on the horizontal surfaces (roofs 

and ground) of 7–8 pts/sqm [24]. A 3D view of the colored 

point cloud Urban Scene is shown in Figure 1. 

 

4. Method 
RF automatic classification is a collective learning 

method for classification, regression and other tasks that 

operates by constructing a multitude of decision trees at the 

time of training; the use of this algorithm requires a 

preliminary processing step related to supervised learning. 

For a correct identification of the elements of which the urban 

scene is composed in the point cloud to be classified, it is 

necessary to define a series of indicators, as the 

characterization of each point is possible through a 

combination of geometric and radiometric characteristics. In 

fact, Linearity, Planarity and Sphericity allow RF to 

distinguish linear and planar elements (such as the floor or 

roof) and volumetric elements. Surface variation and 

anisotropy allow geometric variations in the scene to be 

identified. In addition, the Z-coordinate and Verticality 

indexes allow the classifier to distinguish elevation variations 

and elevation of points. The classification was performed 

using Cloud Compare (3D point cloud and mesh processing 

software) and Anaconda (Python programming language 

distribution platform). In general, the steps necessary for 

Cloud Pre-Processing 

Manual Partitioning and Annotation 

Calculation of geometric features 

 

Sphericity 

Planarity 

Linearity Surface Variation 

Anisotropy 

Z - coordinates 

Verticality 

Input threads for RF 

Execution of RF model 
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classification are schematised in the following pipeline 

(Figure 2). Geometrical characteristics, also known as 

“covariance characteristics”, provide a deeper insight into the 

geometry of the point cloud, highlighting its discontinuities. 

These characteristics are expressed by the eigenvalues λ1, λ2, 

λ3 of the covariance matrix and calculated in a spherical 

surround of the known radius of the point considered. 

Through the eigenvalues, it is then possible to determine the 

geometric features computed in the calculations. According 

to Mohamed et al., 2021 [25], the geometric features can be 

calculated from the following relations: 

Linearity Lλ =  
λ1 − λ2

λ1

 (1) 

Planarity Pλ =  
λ2 −  λ3

λ1

 (2) 

Sphericity Sλ =  
λ3

λ1

 (3) 

Surface Variation Cλ =  
λ3

∑ λ
 (4) 

Anisotropy Aλ =  
λ1 − λ3

λ1

 (5) 

Verticality 𝑉 =  ⟨(0,0,1), 𝑣3⟩ (6) 

For each test, through a statistical approach, the 

effectiveness of the classifier was assessed, with respect to 

overall accuracy, by defining: 

• True Positive (TP): number of features that belong to a 

specific class; 

• True Negative (TN): number of features that do not 

belong to a class but have been wrongly assigned to a class 

other than their own; 

• False Positives (FP): features that do not belong to a class 

but have been positively predicted for the class; 

• False Negatives (FN): features that belong to a class but 

were not predicted as any class in the image. 

 

In the context of ML, it is possible to define the 

Confusion Matrix, where each column of the matrix 

represents the predicted values, while each row represents 

the actual values. The element on row i and column j 

represents the number of cases in which the classifier has 

classified “true” class i as class j, as shown in Figure 3. 

Through this matrix, it is possible to represent the 

statistical classification accuracy using the values of TP/FP 

and FN/TN. The metrics form a hierarchy that, starting from 

these definitions of true/false negative/positive, leads to the 

determination of the parameters up to the evaluation of the 

following indicators:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 3 Representation of the Confusion Matrix 

Precision, Overall Accuracy, Recall, and F1Measure 

[26-28]. 

In particular, precision expresses the measure of the 

number of correct positive predictions (true positives) and 

can be written as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(7) 

Overall accuracy describes the number of correct 

forecasts out of all forecasts: 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + TN + 𝐹𝑃 + 𝐹𝑁
 (8) 

 

Recall measures the number of positive cases the 

classifier predicted correctly out of all positive cases in the 

data. It is sometimes also referred to as sensitivity and can be 

calculated by the equation: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(9) 

Another widely used parameter for point cloud 

classification is the  F1Measure that combines precision and 

recall; indeed, it is generally described as the harmonic mean 

of the two indicators, as it provides a single metric that 

weights the two ratios (precision and recall) equally, 

requiring both to have a higher value for the F1-score to 

increase. The formula of this latter index can be written as 

follows: 

F1Measure = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(10) 
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Fig. 4 Type of classes identified in the “Bordeaux” dataset. 

5. Experimentation on Datasets 
The first fundamental step involves the cleaning of the 

cloud and, thus, the elimination of noise (outliers). For this 

operation, we made use of the command in the Cloud 

Compare plugins known as “Cloth Simulation Filter” [29]. 

This tool, based on Zhang et al., 2016, makes it possible to 

automatically remove the soil by initially setting a general 

parameter on the type of soil (steep terrain, hilly terrain, flat 

terrain). Then, 3 detailed parameters, in this case left equal to 

those predefined by the software. The operations of terrain 

removal and resampling of the cloud were useful to reduce 

computational time and improve the management of the point 

cloud.  Once this phase has been completed, it is necessary to 

annotate and thus manually divide the cloud into 

homogeneous classes. This operation is fundamental 

because, as input to the classifier, two already annotated 

portions of the cloud should be provided:  

one portion for the supervised learning phase (training) 

and one portion for evaluating the goodness of the model 

(evaluation); the latter allows us to evaluate the performance 

of the model through the confusion matrix and thus the 

calculation of the precision, recall and F1-score parameters. 

Manual semantic segmentation was conducted on CC. 

Initially, both datasets were divided so as to distinguish the 

part of the cloud intended for classifier training and the part 

to be classified. The latter portion of the cloud always has a 

much higher number of points than its counterpart. As 

mentioned, the part intended for training was further divided 

and annotated. As for the dataset of the city of Bordeaux, it 

was first reduced, and only a portion of the initial cloud was 

subject to classification. The point cloud was then divided, 

and 3 classes were identified: Vegetation and Urban 

Greening, Building Facades and Roofs, as shown in Figure 4. 

Once the manual annotation phase of the data is 

completed, it is necessary to evaluate which features to select 

in order to classify the scene properly. This is the most critical 

stage of the process because the parameters (resolution and 

radii of the features) may vary from case to case, depending 

on the characteristics and dimensions of the objects. 

However, they correspond to the smallest detail that can be 

represented at a given scale of representation and its metric 

tolerance. The approach proposed in the following paper 

involved the calculation of a total of 40 geometric features. 

In fact, the 6 chosen features were calculated for different 

search radii based on the characteristic dimensions of the 

scenes. In the case of the point cloud on the US of Bordeaux, 

the spherical contours in which the features were calculated 

have extremely different search radii. This is related to the 

characteristic dimensions of the architectural and structural 

elements that make up the dataset.  

 
Fig. 5 Ranking of the importance of Test characteristics 1 
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The following search radii were therefore chosen, as 

found in Kölle et al., 2021 [30] and Haala et al., 2020 [31]: 

0.8 m (for the densest areas of the cloud), 1 m, 2 m, 3 m, 4 m 

and 5 m. Once the preparation of the datasets is complete, the 

classifier must be downloaded. In this paper, the RF 

algorithm proposed by Grilli et al., 2020, available on the web 

platform (https://github.com/3DOM-FBK/RF4PCC) for 

developers “GitHub” was used.  

The output of the execution of the code was the 

generation of a .pkl file (related to the number of random 

trees generated by the classification) and a .txt file containing 

the dataset for the evaluation with a new column for the 

predicted classes. In the prompt, it will also be possible to 

observe a vector called 'feature importance', which allows us 

to evaluate the most significant features in the training phase 

and the “confusion matrix” 

6. Results 
Four tests were conducted on this point cloud. Forty 

features were provided to the classifier as input, and then a 

number of 28, 15 and finally 8 features were selected each 

time. The results obtained after Test 1 are represented in the 

following Figure 5. 

Features that have been removed have a value of less than 

0.01. The classification produced the following confusion 

matrix (Table 1). In addition, three other tests were 

performed, as described above; in particular, test 4 produced 

the following confusion matrix (Table 2). 

The classified point cloud is displayed in Cloud Compare 

software (Figure 6): As done for the other datasets, the OA 

parameter was calculated for each test (Figure 7). In addition, 

based on the average F1-SCORE values obtained from the 

various confusion matrices, it was possible to diagram both 

the trend of the F1 parameter and the trend of the 

computational times according to the number of features 

input to the classifier (Figure 8). 

Table 1. Confusion matrix for test 1 

ID 

Class 
0 1 2 

Precision  

[%] 

Recall 

[%] 

F1-score  

[%] 

0 2524 1155 190 65.24 19.50 30.02 

1 8373 37118 5590 72.66 44.36 55.08 

2 2047 45402 376244 88.80 98.49 93.39 

AVERAGE 75.57 54.12 59.50 

TRAINING TIME: 655.17 s CLASSIFICATION TIME: 71.11s 

N. FEATURES: 40 ACCURACY: 86.89% 

Table 2. Confusion matrix for test 4 

ID Class 0 1 2 
Precision  

[%] 

Recall  

[%] 

F1-score  

[%] 

0 3035 1343 364 64.00 15.42 24.85 

1 13198 81945 6871 80.33 56.24 66.16 

2 3450 62427 382550 85.31 98.14 91.28 

AVERAGE 76.55 56.60 60.76 

TRAINING TIME: 249.86 s CLASSIFICATION TIME: 33.42s 

N. FEATURES: 8 ACCURACY: 84.21% 

 
Fig. 6 Classified point cloud of the historic city centre of Bordeaux 
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Fig. 7 OA values in the several tests 

 
Fig. 8 Classification results with different features 

7. Discussions 
The results obtained on the dataset of the metropolitan 

city of Bordeaux demonstrate how the proposed approach 

allows a semantic classification of the point cloud. It is 

possible to observe, from Figures 7 and 8, how the first test 

performed achieved a value relative to the OA parameter of 

90.3% and an F1-score of 66.5%, respectively. It can also be 

seen, observing from the linear interpolation line on both the 

OA and F1-score, that as the number of features input to the 

classifier decreases, the parameter decreases linearly.  

The reasons for these negative trends are to be attributed 

mainly to the recall and precision parameters; in fact, 

observing the confusion matrices of the various tests carried 

out, it can be seen that as the number of features decreases, 

the classifier increasingly confuses first class 0 (vegetation) 

and class 1 (façades) and then class 1 and class 2 (roofs). This 

shows how in transition zones between very dense areas, 

where there are public green, and less dense areas, such as 

facades, RF classifies many points incorrectly.  

The same applies in the transition zones between 

building façades (not very dense point cloud) and building 

roofs (very dense point cloud). Furthermore, taking the 

feature vector "importance" of tests 1 and 2 into 

consideration, it is easy to see how the features chosen to 

allow the classifier not to misclassify points in areas of 

varying density become unimportant.  

For this reason, geometric features were also calculated 

in a spherical surround of a radius of 0.8 m in order to allow 

the classifier to distinguish high-density zones from low 

density zones. Finally, a further important aspect to take into 

consideration concerns the computational time, i.e. as the 

number of features increases, the classification time also 

increases. In particular, as shown in test 4, as the “training 

time” (decrease in the number of features) decreases, the 

accuracy decreases in an important and decisive way for a 

suitable classification of the urban scene. 

8. Conclusion 
The proposed method based on the use of the Random 

Forest algorithm and a multiscale, reiterative approach 

resulted in a good classification of the point cloud acquired 

by the hybrid sensor. Indeed, the performance indices (OA 

and F1-score) used to assess the quality of the classification 

showed encouraging results. The OA achieved was about 

85%, which is comparable with the existing literature. In 

addition, it was also possible to see how the density of the 

resampled cloud positively influences the calculation time 

and affects the overall accuracy and F1-score by a few 

fractions of a percent. The results obtained on the Urban 

Scene of Bordeaux show that the classification carried out 

with the approach proposed and evaluated in this paper is 

only valid with the 40 features as input to the classifier. It is, 

therefore, clear that for extremely complex datasets, such as 

the urban ones, it is necessary to identify features suitable for 

the multiscale reiterative search and selection methodology.
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