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Abstract - Optical Coherence Tomography (OCT) is a promising and essential tool for retinopathy diagnosis. Ophthalmologists 

use OCT images to identify, treat, and track macular diseases. Manually analysing and interpreting these illnesses from the 

enormous volume of OCT images takes time and effort. The Convolutional Neural Network (CNN), a potential deep learning 

method, has proven exceptionally accurate in classifying images, making them suitable for computer-assisted diagnosis. This 

paper introduces a CNN-based feature extraction and attention fusion network, the FAF-Net, to classify common macular 

diseases. This network enhances the flexibility and accuracy of conventional CNN classification systems. The attention module 

strengthens pre-trained CNN models by emphasising significant features related to anatomical defects in the retina while 

reducing the importance of irrelevant regions. Combining deep pre-trained models with attention processes further improves 

classification accuracy. This study used OCT data to diagnose macular disorders using pre-trained models VGG16 and 

ResNet50. The proposed approach was assessed on the UCSD dataset, a publicly available OCT imaging dataset, achieving a 

classification accuracy of 98.40%. Additionally, Gradient-weighted Class Activation Mapping (Grad-CAM) was employed as a 

visualisation technique to assess the efficacy of the FAF-Net. These results demonstrate that the proposed FAF-Net approach 

substantially increases classifier performance. This method has a promising future in the medical field and provides a robust 

conceptual framework for diagnosing macular diseases. 

Keywords - CNN, Deep learning, Feature extraction, Image classification. 

1. Introduction  
The central region of the retina, known as the macula, 

plays a vital role in providing clear and sharp vision. The two 

most prevalent retinal diseases are Age-related Macular 

Degeneration (AMD), which is the primary cause of blindness 

in older people, and Diabetic Macular Edema (DME), which 

is the leading cause of vision loss in younger and middle-aged 

individuals [1]. Diabetes can damage retinal blood vessels, 

causing them to leak or constrict, leading to DME, a severe 

eye disorder that can impair vision and even cause blindness. 

Dry AMD, also known as drusen, is characterised by the 

formation of minute yellow deposits of fatty proteins beneath 

the retina. Over time, these deposits might accumulate, 

leading to wet AMD impairing central vision. Wet AMD, 

mainly caused by Choroidal Neovascularisation (CNV), the 

development of new blood vessels in the choroid layer, is the 

leading cause of central vision loss. Accurate and prompt 

retinal screening and early treatment can prevent more than 

80% of vision loss [2,3]. OCT imaging [4] produces high-

resolution cross-sectional pictures non-invasively and 

provides a detailed view of structural and textural variations 

within the layers of the retina [5]. Figure 1 shows some 

examples of OCT scans from various classes. It aids in early 

disease detection and enables treatment before the appearance 

of visual complaints, decreasing the chances of irreversible 

vision loss [6]. However, manual analysis and diagnosis of 

retinal diseases from vast volumes of OCT scans is 

challenging, time-consuming, and susceptible to subjective 

findings. Computer-assisted detection of retinal illness greatly 

assists in automatic and accurate OCT image categorisation. 

Developing classifier models for automatically 

discriminating retinal OCT images using deep learning-based 

methods significantly benefits clinical healthcare [7]. Deep 

Learning (DL) techniques, especially those based on 

Convolutional Neural Networks (CNN), have shown 

remarkable improvements in classifying biological images. 

The improvement can be credited to their ability to extract 

features from images using convolution methods. Tayal et al. 

[8] offered three CNN models to classify four eye disorders 

based on OCT data. They used 6,678 OCT images and 

enhanced them before presenting them to the models. With a 

96.50% accuracy, the nine-layer CNN model surpassed the 

five- and seven-layer CNN models. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1corresponding.author@mailserver.com(Size9)
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Fig. 1 Some examples of OCT images of Macular disease 

 For the study of medical images, large, labelled datasets 

may not always be accessible. Then, Transfer Learning (TL) 

is advantageous for various biological image categorisation 

applications. Han et al. [9] used three CNN TL models to 

differentiate between three subtypes of neovascular AMD 

(nAMD) and normal. They trained and validated their 

approach on a dataset of 4,749 SD-OCT images, tested it on 

920 images, and achieved an accuracy of 87.4% using the 

VGG-16 model. Minagi et al. [10] used Universal Adversarial 

Perturbations (UAPs) and TL to classify medical images, 

including OCT data. They categorised the pictures into four 

categories with 95.3% accuracy using a dataset of 11,200 OCT 

images for training and testing. 

The TL technique causes faster network convergence, 

while the classification result still needs to be improved. 

Instead of directly employing features from a pre-trained 

CNN, feature fusion is used as the image representation for 

enhancing macular OCT image categorisation. Using the 

CNN multiscale feature fusion strategy, Sotoudeh-Paima et al. 

[11] discriminated between normal, drusen, and CNV in OCT 

images. On a public dataset, their CNN performed with a 

categorisation accuracy of 93.40%. Elaziz et al. [12] 

constructed a DL-based ensemble model to recognise four 

classes of retinal diseases.  

They integrated the feature maps from the MobileNet and 

DenseNet models for the input images. They employed a 

feature selection technique to filter out irrelevant information 

and then used machine learning for classification, resulting in 

an accuracy of 94.31% based on 968 OCT images. Pin et al. 

[13] proposed an automated approach based on DL and 

ensemble machine learning classifiers to screen five retinal 

diseases from OCT images. They used DL to extract features 

from the images and applied two machine learning algorithms 

to categorise these features. By merging the outputs of both 

classifiers, they achieved an accuracy of 97.68%.The 

attentional process of DL is based on how people pay attention 

to images. The attention process emphasises vital information 

while suppressing irrelevant information to increase 

prediction confidence. Liu et al. [14] used an attention-based 

retinal OCT image classification method. These features 

provided categorisation criteria for the normal, CNV, DME, 

and drusen classes and found an average accuracy of 95.10%. 

This paper introduces a CNN-based feature attention 

fusion network, the FAF-Net, to the automated diagnosis of 

common macular diseases. FAF-Net combines the feature 

extraction strengths of ResNet50 and VGG16, two potent deep 

CNN models, with an attention mechanism contributing to 

accurately detecting retinal disorders. The key findings of this 

study are summarised as follows: 

• An effective hybrid attention module, incorporating both 

channel and spatial attention, is provided to enhance CNN 

feature representation. This module strengthens the 

representation of vital information while diminishing the 

emphasis on irrelevant information. 

• A fusion operation is implemented to integrate two CNN 

model architectures with the attention mechanism. This 

feature fusion enhances the classifier's discrimination 

capability by augmenting the dimensionality and 

introducing non-linearity to the fused feature vector. 

• The effectiveness of the FAF-Net is assessed using the 

Gradient-Weighted Class Activation Mapping (Grad-

CAM) method, providing insights into the visualisation of 

attention and the model's performance. 

The remaining sections of the paper are arranged as 

follows. Section 2 describes the suggested FAF-Net network 

and the details of the associated modules. Section 3 discusses 

the experimental details, whereas Section 4 presents the 

outcomes. Section 5 discusses an ablation study, and Section 

6 presents the conclusions. 

2. Method 
OCT scan produces a two-dimensional image of the 

retinal layers and surrounding tissues. Diagnostic systems 

must concentrate on the area of the retina with significant 

changes  in morphological features for meaningful feature 

extraction and superior categorisation. Figure 1 shows the 

retinal layer deformation due to macular disorders. FAF-Net, 

an attention-based technique that focuses on deformation 

zones and captures important morphological features for final 

classification, is shown in Figure 2. A novel architecture is 

proposed in which important deep features are effectively 

chosen, leading to the accurate classification of OCT images. 

The FAF-Net system comprises four main stages: feature 

extraction, feature attention, multi-attention fusion, and 

classification. 
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 Fig. 2 The architecture of the proposed FAF-Net model 

2.1. Feature Extraction 

The proposed research used two pre-trained models, 

VGG16 and ResNet50, to extract features from OCT images. 

VGG16, a well-known deep learning architecture [15], has 16 

layers, 13 of which are convolutional. The input layer of 

VGG16 accommodates images with dimensions of 

224×224×3 pixels. Researchers from various fields have used 

the VGG16 network to solve problems [16-18]. On the other 

hand, ResNet50, another widely used transfer-learning model 

[19], is a deeper model comprising a total of 50 layers, with 

48 of them being convolutional layers. As a model's depth 

increases, challenges related to gradients, such as vanishing 

and exploding gradients, can emerge. ResNet50 tackles these 

issues by incorporating skip connections, allowing for the 

addition of extra layers while preserving essential information 

throughout data processing. The input dimension for 

ResNet50 is also 224×224×3. Several researchers have 

employed this network architecture to address problems in 

various fields [20 - 23]. 

2.2. Feature Attention  

This section introduces the proposed attention networks, 

including the Channel Attention Module (CAM) and Spatial 

Attention Module (SAM), as illustrated in Figure 2. The 

channel attention module's primary objective is to 

provide different feature maps with channel coefficients so 

they can identify correlations across channels. On the other 

hand, the spatial attention module focuses on assigning spatial 

coefficients to different feature maps, making the importance 

of location information across different feature maps simpler.

496 x 1024 Image 

Fusion Feature Map 

Image Pre-Processing 

VGG16 ResNet50 

CAM SAM CAM SAM 

Concatenation Concatenation 

Concatenation 

GAP 

Convolution 1x1 

Classifier 

224 x 224 x 3 

Feature Maps 7 x 7 x 512 7 x 7 x 2048 

7 x 7 x 512 7 x 7 x 2048 

7 x 7 x 4096 7 x 7 x 1024 

7 x 7 x 5120 

1 x 1 x 5120 

1 x 1 x 1024 



V. Latha & Sreeni K G  / IJETT, 72(3), 391-401, 2024 

 

394 

 

 

 

 

 

 

 

 

 

Fig. 3 Channel Attention Module (CAM) architecture 

 

 

 

 

 

 

 

 

 

Fig. 4 Spatial Attention Module (SAM) architecture 

2.2.1. Channel Attention Module (CAM) 

Figure 3 displays the architecture of the CAM. This 

method uses two global pooling operations as parallel 

branches to squeeze the feature map channel-wise [24]. The 

feature map F is subjected to a global max-pooling procedure, 

resulting in channel-wise maximum value feature maps 

(CMAX). The parallel global average-pooling technique on F 

creates channel-wise average value feature maps (CAVE). The 

next step involves concatenating CMAX and CAVE; the resulting 

output is reshaped and passed through a convolutional layer 

for feature map smoothing and compression. A Fully 

Connected layer (FC) receives the output from the 

convolutional process and applies the FC result to the sigmoid 

function to produce the feature map C. Equation (1) illustrates 

this operation. 

𝐶 =  𝜎 (𝐹𝐶 (𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡 ( 𝐶𝑀𝐴𝑋 , 𝐶𝐴𝑉𝐸))))    …(1) 

Where σ represents the sigmoid operation, Conv is the 

convolution, and concat represents the concatenation 

operation. This attention module can capture each feature 

map's response across all channels while reducing noise 

interference. The CNN feature map F  is multiplied by feature 

map C channel-wise, followed by a pixel- wise addition 

operation with F is performed, as given in Equation (2). 

𝑂1 =  𝐹 ⴲ (𝛼 𝐹 ⊗𝐶ℎ𝑎𝑛𝑛𝑒𝑙  𝐶)            (2) 
  

Where ⊗Channel denotes multiplication at the channel 

level, α is the learnable parameter. It is a non-zero value (used 

α =1.0), ⴲ represents addition at the pixel level, and O1 

represents the residual module output. With the pixel-level 

addition of smoothed feature maps and the initial feature map, 

the multiscale residual attention fusion module produces the 

output O1. 
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2.2.2. Spatial Attention Module (SAM) 

Convolutional neural networks frequently use max-

pooling and average-pooling operations to reduce feature map 

sizes while preserving crucial spatial response data in each 

channel. Due to variability in lesion sizes and forms, they may 

unintentionally maintain noise [25]. 

Since noise interference must be suppressed, the spatial 

attention modules concurrently execute 2D max-pooling and 

average-pooling to collect the essential spatial response data 

from all channels, as illustrated in Figure 4.This method 

produces attention maps SMAX and SAVE by feeding feature 

map F parallel to the maximum and average map branches. 

These maps are then concatenated along the channel 

dimension. The concatenated maps are compressed using a 

convolutional approach, and a sigmoid function is then used 

to create the feature map S. Equation (3) illustrates this 

procedure. 

𝑆 =  𝜎(𝐶𝑜𝑛𝑣 (𝐶𝑜𝑛𝑐𝑎𝑡(𝑆𝑀𝐴𝑋 , 𝑆𝐴𝑉𝐸  )))        (3) 

Where σ represents the sigmoid operation, Conv is the 

convolution, and concat represents the concatenation 

operation. This module can effectively reduce noise 

interference while collecting each feature map's response 

across all channels. The  CNN feature map F  is multiplied by 

feature map S spatially, and then a pixel-wise addition 

operation with F is performed as given. Equation (4). 
 

𝑂2 =  𝐹 ⴲ (𝛽 𝐹 ⊗𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑆)        (4) 

Where ⊗Spatial denotes multiplication at the spatial level,  

β is a learnable parameter and is a non-zero value (used β= 

1.0), ⴲ represents addition at the pixel level, and O2 

represents the residual module output. Pixel-wise addition of 

the initial feature map and the smoothed attention feature map 

produces the multiscale residual attention fusion module 

output O2. 

2.3. Multi-Attention Fusion Module  

The Multi-Attention Fusion Operation (MAFO) transmits 

the output results of CAM and SAM with the baseline models 

through Concatenation operations. It performs attention 

feature fusion of CNNs, as shown in Figure 2. The feature 

fusion technique output goes through a global average pooling 

(GAP) to reduce the dimension to 1D and then to the disease 

identification classifier. 

2.4. Classifier Module 

In this section, three Fully Connected (FC) layers and a 

softmax classifier complete the classification process. The 

concatenation layer creates the feature map to the initial FC 

layer,  a 1024-dimensional feature vector with the ReLU 

activation function. The second FC layer produces a 512-

dimensional feature vector, and the third FC layer performs to 

create a 4-dimensional feature vector. The Softmax function 

in the topmost layer determines the output decision classes. 

3. Experimental Procedure 
This study offers a CNN-based feature extraction and 

attention fusion network to enhance the discriminative 

features from pre-trained CNNs like VGG16 and ResNet50. 

3.1. Dataset 

The training dataset from UCSD[25] contains 108,309 

OCT B-scans, divided into 51,140 normal B-scans, 8,616 

drusen scans, 11,348 DME scans, and 37,205 CNV scans. In 

the test set, there are 250 images for each category. The 

Beijing Tongren Eye Centre, California Retinal Research 

Foundation, Shanghai First People's Hospital, Medical Centre 

Ophthalmology Associates, and Shiley Eye Institute 

collaborated to manage the UCSD retinal OCT dataset 

collected between July 1, 2013, and March 1, 2017. This 

dataset is currently the biggest and the finest resource for 

macular OCT imaging. 

3.2.  Image Pre-processing  

Data pre-treatment techniques were implemented to 

reduce the hardware resource requirements and enhance the 

model's reliability. All OCT images were resized to 224x224 

pixels to meet the CNN model's requirements for the precise 

image input size and to speed up processing.  

The pixel values were normalised to ensure uniform 

treatment of each image. Upon completion of the pre-

processing steps, the training dataset was partitioned, 

allocating 20% of the images to the validation set and the 

remaining 80% to the training set.  

3.3.  Implementation Details 

The model was developed using the Google CoLab 

development environment, leveraging a potent Graphics 

Processing Unit (GPU) and deep learning frameworks built on 

TensorFlow. Training the model involved 50 iterations 

utilising the Adam optimiser, with a batch size of 16 and a 

learning rate set at 0.0001. The CNN model with the lowest 

validation loss was selected as the optimal model, and its 

performance was evaluated on the test set to assess the training 

results. 

3.4. Evaluation Metrics 

The suggested FAF-Net method's classification 

performance was evaluated using a combination of qualitative 

and quantitative metrics. 

3.4.1. Learning Curves 

A learning curve depicts a model's progress as it learns 

from a training set. Following each training cycle, the model 

is assessed using the training and separate validation datasets. 

Examining learning curves during training makes it possible 

to detect the model learning, correct fitting, underfitting or 

overfitting, and the representativeness of the training and 

validation datasets. 
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3.4.2. ROC Curve 

The Receiver Operating Characteristic   (ROC) curve is a 

metric for evaluating a classifier model performance. This 

curve offers a numerical way of assessing the accuracy and 

comparing the results of different test or prediction models. 

The ROC curve demonstrates the balance between sensitivity 

and specificity. The area under the ROC curve,  AUC, 

determines a test's usefulness. A classifier with an  AUC of 

more than 0.9 is considered outstanding. 

3.4.3. Confusion Matrix 

A confusion matrix serves as a tool for evaluating the 

performance of a supervised learning system. It provides a 

visual and summarised representation of a classification 

algorithm's performance. A Confusion matrix is a comparison 

summary of any classification problem's predicted and actual 

results. The confusion matrix illustrates when one class is 

explicitly confused with another in machine learning. A 

confusion matrix can assist in identifying various performance 

metrics, Sensitivity/Recall, Precision, Accuracy, and F1-score 

metrics employed to explore and compare the model. 

3.4.4. Grad CAM 

Grad-CAM (Gradient-weighted Class Activation 

Mapping) is a method used to reveal where a CNN model 

concentrates. Since it is class-specific, each input class or 

image generates a distinct visualisation.Grad-CAM creates a 

heatmap visualisation for each class label, allowing us to 

visually confirm the regions of interest that the network has 

located in an image. 

4. Results and Discussion  
The proposed FAF-Net model, based on CNN, showed 

promising results for accurately classifying the OCT images. 

Learning curves are commonly employed as diagnostic tools 

in machine learning for algorithms that continuously extract 

new information from a training  dataset. 

Figures 5, 6, and 7 display two models: the Complete 

dataset model, which uses all available datasets for training 

and prediction across four classes (CNV, DME, drusen, 

normal), and the Limited dataset model, which chooses 10% 

of retinal OCT images from each category in the training set 

to train and predict across the four classes (CNV,  DME, 

drusen, normal). The same test set of 1000 images is assessed 

on the proposed model, FAF-Net,  the Complete dataset model 

and the Limited dataset model. The confusion matrix data is a 

quantitative study useful for network monitoring and analysis. 

The confusion matrix enables the determination of recall, 

precision, accuracy and f1 score metrics.  

The classification system under test often includes the 

confusion matrix and associated metrics. The confusion 

matrix for the proposed FAF-Net model is displayed in Figure 

6, while Table 1 presents performance metrics. The evaluation 

metrics obtained by FAF-Net in the limited data model are 

inferior to those achieved in the complete data model.  

This discrepancy is mainly attributed to the significantly 

smaller size of the training dataset, resulting in insufficient 

training. In addition to accuracy measurements, ROC curves 

are used to assess the accuracy and robustness of the system. 

ROC curves were generated for every class, corresponding to 

the CNV, DME, drusen, and normal classes, as shown in 

Figure 7. The AUC is a performance measure that evaluates 

the strengths and weaknesses of a model. The AUC in Figure 

7 suggests that the classifier accurately distinguishes between 

the diseased and the normal image.

        
(a) Limited data model                                                                            (b) Complete data model 

Fig. 5  FAF-Net model’s learning curves. 
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(a) Limited data model                                                                            (b) Complete data model 

Fig. 6 Confusion Matrix of FAF-Net   

 
(a) Limited data model                                                                            (b) Complete data model 

Fig. 7 ROC performance of FAF-Net 

Table 1. FAF-Net model’s categorisation effectiveness 

 Class-wise Performance Overall Performance 

 

 

 

Class Recall Precision Accuracy F1-score Recall Precision Accuracy F1-score 
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 CNV 0.992 0.954 0.986 0.973 

0.974 0.975 0.974 0.974 
DME 0.996 0.954 0.987 0.975 

Drusen 0.936 0.996 0.983 0.965 

Normal 0.972 0.996 0.992 0.984 

C
o

m
p

le
te

 

D
a

ta
se

t 

M
o

d
el

 CNV 0.992 0.954 0.986 0.973 

0.984 0.984 0.984 0.984 
DME 0.996 0.992 0.997 0.994 

Drusen 0.952 0,952 0.987 0.973 

Normal 0.996 0.996 0.998 0.996 
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Fig. 8  Samples of a) Input image and Grad CAM representation of feature maps b) Limited data model c) Complete data model 

Table 2. Comparison of retinal OCT image classification results

Year Author Task Method Dataset size Accuracy 
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TL with CNN models 4749 87.40% 

2022 Paima et al. [11] CNN multiscale feature fusion strategy 120,961 93.40% 

2022 Elaziz et al. [12] Feature selection and Ensemble DL model 84,484 94.32% 

2022 Liu et al. [14] The attention classification model using DL 86,134 95.10% 

2022 Minagi et al. [10] CNN-based TL models 11,200 95.30% 

2021 Tayal et al. [8] CNN-based DL models 84,484 96.50% 

2023 Kuntha Pin et al. [13] Hybrid ensemble DL classifiers. 2,998 97.68% 
 Proposed model CNN-based feature extraction and Attention fusion 108,309 98.40% 

 
Fig. 9 The effect of additional components on classification performance
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Figure 8 displays the visualisation map created by the  

Grad-CAM algorithm, illustrating how effectively the 

proposed model performs.This localisation map showcases 

the classification results of the proposed approach after 

attention and feature fusion on VGG16 and ResNet50. In OCT 

images of CNV, irregular retinal pigment epithelium (RPE) 

elevations can be observed due to damaged choroidal 

capillaries, interlayer effusion, lipid exudation, and other 

distinctive features. OCT images of DME depict cystic 

alterations around the macular fovea and edema of the retinal 

inner surfaces. As in OCT images, drusen is characterised by 

isolated RPE protrusions and enhanced choroid reflectance. In 

contrast, the OCT scans of the normal group reveal a well-

organised and multilayered retina. This validation signifies 

that the GradCAM localisation map confirms the success of 

the proposed FAF-Net technique.  

4.1. Comparison results 

Most of the reviewed studies focused on TL for creating 

new models and integrating basic CNN models with machine 

learning algorithms. A direct performance comparison is 

impossible since each research study employed a different 

dataset to establish its effectiveness. Table 2 compares the 

FAF-Net OCT image classification approach with the most 

recent findings given in Section 1.  

In contrast to the limitation of relying on a single CNN 

model, the proposed technique enhances features by 

combining two pre-trained CNNs with feature attention. The 

research has outperformed the above-mentioned studies, 

achieving an impressive accuracy rate of 98.40%. Adding the 

attention module resulted in a noticeable improvement in 

classification performance, and the model demonstrated 

further improvements by incorporating the feature fusion of 

networks. The limitation of our proposed research is the 

difficulty of obtaining a wide range of labelled medical image 

datasets,  as the annotation of images demands extensive time 

and effort from experienced experts. 

5. Ablation Studies 
The effectiveness of the proposed method depends on 

three key factors: feature extraction, feature attention, and 

feature fusion. Our suggested technique improved the multi-

CNN feature fusion's spatial and channel-wise discriminative 

performance. We performed ablation tests on the UCSD 

Dataset using ResNet50 and VGG16 as the baseline networks 

to show the performance of each component separately.  

The base CNN architecture was methodically 

incorporated with each element, and the models were trained 

with the same settings as the proposed model to assess the 

impact of these added modules. Performance measures were 

then calculated to assess the impact of these additional 

modules, as shown in Figure 9. The commonly used image 

processing techniques produce poor outcomes due to 

similarities in the retinal OCT-based lesions' images. The 

basic CNN architecture failed to achieve satisfactory 

classification performance. However, the integration of the 

attention module improved the classification performance. 

The model with the feature fusion showed enhancements in 

performance, while the models with the feature attention 

fusion showed further enhancements in image classification.  

We compared the models VGG16, ResNet50, VGG16 U 

ResNet50 (Feature Fusion of  VGG16 and ResNet50), 

VGG16+CAM (VGG16 features modified with channel 

attention module), VGG16+SAM (VGG16 with spatial 

attention module), VGG16+(HAM) (VGG16 with channel 

attention and spatial attention fusion - hybrid attention). Then 

ResNet50+CAM (ResNet50 features modified with Channel 

Attention Module), ResNet50+SAM (ResNet50 with spatial 

Attention Module), ResNet50+(HAM) (ResNet50 with hybrid 

attention) and the proposed model FAF-Network in this 

section. 
 

The conclusions from Figure 9 are listed below. 

• The feature fusion of two CNN models can boost 

classification accuracy compared to the baseline models. 

Deep feature fusion,  VGG16 U ResNet50, 

outperforms the baseline models VGG16 and ResNet50, 

with an accuracy of 97.20% as opposed to 94.00% and 

96.70%, respectively. Since both the baseline networks 

can learn features and generalise well, feature fusion 

obtains the information simultaneously, resulting in better 

performance. 

• The attention mechanism has great potential to enhance 

the performance of  CNNs. In addition to providing where 

to focus, it strengthens the feature representation of 

interests. VGG16+CAM (accuracy = 95.10), 

VGG16+SAM(accuracy = 95.50), ResNet50+CAM 

(accuracy =97.30) and ResNet50+SAM (accuracy 

=97.40) have better outcomes compared to their baseline 

models VGG16 and ResNet50. Combining channel 

attention with spatial attention, VGG16+(HAM) and 

ResNet50+(HAM) achieved remarkable performance 

(accuracies of 96.10 and 98.00, respectively) in their 

tasks.  

• The proposed FAF-Net provides the highest classification 

performance with an accuracy of 98.40%. It offers a 

fusion technique that uses VGG16+(HAM) and 

ResNet50+(HAM) feature maps based on hybrid 

attention, capturing more precise semantic areas. 

6. Conclusion  
The FAF-Net is presented in this study, serving as a 

feature extraction and attention fusion network based on 

CNNs for identifying macular diseases from OCT images. 

FAF-Net combines deep pre-trained VGG16 and ResNet50 

models with attention networks to increase the classification 

accuracy of macular diseases. According to the findings, the 

proposed method performs better than standalone classifiers. 
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The classification effectiveness of the suggested technique 

was assessed using the UCSD dataset, revealing that macular 

abnormalities could be detected with a remarkable accuracy of 

98.4% (the accuracy increased by 4.4% compared to VGG16 

and 1.7% to Resnet50). This approach can significantly 

improve macular disease screening applications by enabling 

rapid and accurate disease identification. A limitation of this 

approach is model training requires large and varied datasets. 

The OCT picture quality and the types of diseases under study 

further influence the algorithm's effectiveness. Further 

research using large and diverse datasets might enhance the 

accuracy and the generalizability of the proposed 

methodology, FAF-Net,  for applications involving the 

classification of OCT images.
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