A Review on Computational Approaches for Disease Diagnosis in Wireless Capsule Endoscopy Images

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2019 by IJETT Journal
Volume-67 Issue-8
Year of Publication : 2019
Authors : Mrs.R.Sathiya, Dr.R.Kalaimagal
  10.14445/22315381/IJETT-V67I8P206

MLA 

MLA Style: Mrs.R.Sathiya, Dr.R.Kalaimagal"A Review on Computational Approaches for Disease Diagnosis in Wireless Capsule Endoscopy Images" International Journal of Engineering Trends and Technology 67.8 (2019): 29-48.

APA Style: Mrs.R.Sathiya, Dr.R.Kalaimagal. A Review on Computational Approaches for Disease Diagnosis in Wireless Capsule Endoscopy ImagesInternational Journal of Engineering Trends and Technology, 67(8), 29-48.

Abstract
Wireless Capsule Endoscopy (WCE) is a commonly used technique for the examination of inflammatory bowl diseases and disorders in clinics. It is an effective and efficient non-invasive procedure for the visualization of the entire small intestine of a patient. It enables a physician to diagnose the abnormality of the digestive system at the earliest for prognosis. The manual examination of the WCE images, frame by frame is a tedious task for physicians. A physician requires two to three hours for the investigation of WCE images of one patient for the accurate diagnosis and staging of the diseases. Therefore, intelligent approaches are designed and implemented in the past couple of decades to provide support for endoscopists to analyze the images. In this paper, a survey on different image processing techniques and machine learning approaches used for the accurate and quick examination of WCE images has been presented. The issues behind the computational approaches for processing WCE images and videos are also analyzed with future directions.

Reference
[1] Chen, Y., & Lee, J. (2012). A Review of Machine-Vision-Based Analysis of Wireless Capsule Endoscopy Video. Diagnostic and Therapeutic Endoscopy, 2012;1155;1-9..
[2] Wu, X., Chen, H., Gan, T., Chen, J., Ngo, C., & Peng, Q. (2016). Automatic Hookworm Detection in Wireless Capsule Endoscopy Images. IEEE Transactions on Medical Imaging,2016;35(7);1741-1752.
[3] By Max Tilson, M.D. and John R. Saltzman, M.D. Brigham and Women’s Hospital Harvard Medical School, Boston, MA, Small Bowel Bleeding and Capsule Endoscopy
[4] T. Yamada, D. H. Alpers, and C. Owyang, Textbook of gastroenterology: Wiley-Blackwell, 2009.
[5] Alam, M. W., Hasan, M. M., Mohammed, S. K., Deeba, F., & Wahid, K. A. (2017). Are Current Advances of Compression Algorithms for Capsule Endoscopy Enough? A Technical Review. IEEE Reviews in Biomedical Engineering, 2017;10;1109;26-43.
[6] Mateen, H., Basar, R., Ahmed, A. U., & Ahmad, M. Y. (2017). Localization of Wireless Capsule Endoscope: A Systematic Review. IEEE Sensors Journal, 2016;17(5);1109;1197.
[7] Hariton Costin (2014). Recent trends in Medical Image Processing Editorial (Preface) for a special issue of Computer Science Journal of Moldova 2014.
[8] Navnish Goel, Akhilendra Yadav, Brij Mohan Singh (2016), Medical Image Processing: A Review. Innovative Applications of Computational Intelligence on Power,
[9] Energy and Controls with their Impact on Humanit, IEEE 2016/.
[10] Yu Cao, Danyu Liu, Tavanapong, W., Wong, J., Jung Hwan Oh, & De Groen, P. (2007). Computer-Aided Detection of Diagnostic and Therapeutic Operations in Colonoscopy Videos. IEEE Transactions on Biomedical Engineering, 2007;54(7);1109;1268-1279..
[11] Gloger, O., Lehnert, B., Schrade, A., & Volzke, H. (2015). Fully Automated Glottis Segmentation in Endoscopic Videos Using Local Color and Shape Features of Glottal Regions. IEEE Transactions on Biomedical Engineering, 2015;62(3);1109;795-806..
[12] Pavankumar Naik, Arun Kumbi, Vishwanath Hiregoudar (2017). Wider Necessity of Digital Image processing in Biomedical with its further scope. International Journal for Research Trends and Innovation. Volume 1, Issue 2 2017..
[13] Halalli, B., & Makandar, A. (2018). Computer Aided Diagnosis - Medical Image Analysis Techniques. Breast Imaging 2018;10;5772.
[14] Kodogiannis, V., Boulougoura, M., Lygouras, J., & Petrounias, I. (2007). A neuro-fuzzy-based system for detecting abnormal patterns in wireless-capsule endoscopic images. Neurocomputing, 2006;70(4-6);704-717.
[15] LI, B., & MENG, M. Q. (2007). DISEASES DETECTION IN WIRELESS CAPSULE ENDOSCOPY IMAGES WITH COLOR FEATURE. International Journal of Information Acquisition, 2007;04(03);251-259.
[16] Smith, W., Vakil, N., & Maislin, S. (1992). Correction of distortion in endoscope images. IEEE Transactions on Medical Imaging, 1992;11(1),117-122.
[17] Vijayan Asari, K., Kumar, S., & Radhakrishnan, D. (1999). A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation. IEEE Transactions on Medical Imaging, 1999;18(4);1109;42;345-354.
[18] Taosong He, Lichan Hong, Dongqing Chen, & Zhengrong Liang. (2001). Reliable path for virtual endoscopy: ensuring complete examination of human organs. IEEE Transactions on Visualization and Computer Graphics, 2001;7(4);1109;333-342..
19] Helferty, J., Chao Zhang, McLennan, G., & Higgins, W. (2001). Videoendoscopic distortion correction and its application to virtual guidance of endoscopy. IEEE Transactions on Medical Imaging, 2001;20(7);1109;605-617.
[20] Li, B., & Meng, M. Q. (2006). Wireless Capsule Endoscopy Images Enhancement by Tensor Based Diffusion. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.2006;10;1109.
[21] P. Perona and J.Malik, ―Scale-space and edge detection using anisotropic diffusion,‖ IEEE Tansactions on PAMI 1990; 12; 629-639.
[22] Li, B., & Meng, M. Q. (2007). Analysis of the gastrointestinal status from wireless capsule endoscopy images using local color feature. 2007 International Conference on Information Acquisition.2007;10;1109.
[23] Li, B., & Meng, M. Q. (2007). Wireless Capsule Endoscopy Images Enhancement using Contrast Driven Forward and Backward Anisotropic Diffusion. 2007 IEEE International Conference on Image Processing. 2007;10;1109.
[24] G. Gilboa, N. Sochen, and Y.Y.Zeevi, ―Forward-and-Backward diffusion processes for adaptive image enhancement and denoising,‖ IEEE Transactions on Image Processing, 2002;11;689-703.
[25] K. Zuiderveld, ―Contrast Limited Adaptive Histogram Equalization,‖ Chapter VIII.5, Graphics Gems IV. P.S. Heckbert (Eds.), Cambridge, MA, Academic Press, 1994;474–485.
[26] Tsevas, S., Iakovidis, D. K., Maroulis, D., & Pavlakis, E. (2008). Automatic frame reduction of Wireless Capsule Endoscopy video. 2008 8th IEEE International Conference on BioInformatics and BioEngineering.2008;10;1109.
[27] Alexandre, L., Nobre, N., & Casteleiro, J. (2008). Color and Position versus Texture Features for Endoscopic Polyp Detection. 2008 International Conference on BioMedical Engineering and Informatics.2008;10;1109;246.
[28] T. Ojala and M. Pietikainen. Unsupervised texture segmentation using feature distributions. Pattern Recognition,1999;32:477–486.
[29] D. K. Iakovidis, D. E. Maroulis, S. A. Karkanis, and A. Brokos. A comparative study of texture features for the discrimination of gastric polyps in endoscopic video. In 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05), 2005;575–580.
[30] S. Karkanis, D. Iakovidis, D. Maroulis, D. Karras, and M. Tzivras. Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Trans. on Irformation Technology in Biomedicine,2003;7(3):141–152.
[31] Khun, P. C., Zhang Zhuo, Liang Zi Yang, Li Liyuan, & Liu Jiang. (2009). Feature selection and classification for Wireless Capsule Endoscopic frames. 2009 International Conference on Biomedical and Pharmaceutical Engineering. 2009;10;1109;5384106.
[32] Jung Hwan Oh, Sae Hwang, Yu Cao, Tavanapong, W., Danyu Liu, Wong, J., & De Groen, P. (2009). Measuring Objective Quality of Colonoscopy. IEEE Transactions on Biomedical Engineering, 2008;56(9),2190-2196.
[33] Li Liu, Chao Hu, Wentao Cai, & Meng, M. (2009). Capsule endoscope localization based on computer vision technique. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2009;10.1109.
[34] B. Penna, T. Tillo, M. Grangetto, E. Magli and G. Olmo, "A technique for blood detection in wireless capsule endoscopy images," 2009 17th European Signal Processing Conference, Glasgow, 2009; 1864-1868.
[35] Sousa, A., Dinis-Ribeiro, M., Areia, M., & Coimbra, M. (2009). Identifying cancer regions in vital-stained magnification endoscopy images using adapted color histograms. 2009 16th IEEE International Conference on Image Processing (ICIP). 2009;10.1109.
[36] Häfner, M., Brunauer, L., Payer, H., Resch, R., Gangl, A., Uhl, A. Vécsei, A. (2010). Computer-Aided Classification of Zoom-Endoscopical Images Using Fourier Filters. IEEE Transactions on Information Technology in Biomedicine, 2010;14(4), 958-970.
[37] S. Kato, T. Fujii, I. Koba, Y. Sano, K. Fu, A. Parra-Blanco, H. Tajiri, S. Yoshida, and B. Rembacken, ―Assessment of colorectal lesions using magnifiying colonoscopy and mucosal dye spraying: Can significant lesions be distinguished?‖ Endoscopy, 2001;33, 306–310.
[38] D. P. Hurlstone, S. S. Cross, I. Adam, A. J. Shorthouse, S. Brown, D. S. Sanders, and A. J. Lobo, ―Efficacy of high magnification chromoscopic colonoscopy for the diagnosis of neoplasia in flat and depressed lesions of the colorectum: A prospective analysis,‖ Gut, 2004;53; 2;284–290.
[39] Yi Wang, Tavanapong, W., Wong, J., JungHwan Oh, & De Groen, P. (2010). Detection of Quality Visualization of Appendiceal Orifices Using Local Edge Cross-Section Profile Features and Near Pause Detection. IEEE Transactions on Biomedical Engineering, 2009;57(3);685-695. [
40] Charisis, V., Hadjileontiadis, L. J., Liatsos, C. N., Mavrogiannis, C. C., & Sergiadis, G. D. (2010). Abnormal pattern detection in Wireless Capsule Endoscopy images using nonlinear analysis in RGB color space. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. 2010;10;1109.
[41] Vilarino, F., Spyridonos, P., DeIorio, F., Vitria, J., Azpiroz, F., & Radeva, P. (2010). Intestinal Motility Assessment With Video Capsule Endoscopy: Automatic Annotation of Phasic Intestinal Contractions. IEEE Transactions on Medical Imaging, 2010;29(2), 246-259.
[42] Khan, T. (2011). Low-complexity colour-space for capsule endoscopy image compression. Electronics Letters, 2011;47(22), 1217.
[43] Karargyris, A., & Bourbakis, N. (2011). Detection of Small Bowel Polyps and Ulcers in Wireless Capsule Endoscopy Videos. IEEE Transactions on Biomedical Engineering, 2011;58(10), 2777-2786.
[44] Behrens, A., Bommes, M., Gross, S., & Aach, T. (2011). Image quality assessment of endoscopic panorama images. 2011 18th IEEE International Conference on Image Processing. 2011;10;1109.
[45] Yao Shen, Guturu, P., & Buckles, B. P. (2012). Wireless Capsule Endoscopy Video Segmentation Using an Unsupervised Learning Approach Based on Probabilistic Latent Semantic Analysis with Scale Invariant Features. IEEE Transactions on Information Technology in Biomedicine, 2011;16(1);98-105.
[46] Kumar, R., Qian Zhao, Seshamani, S., Mullin, G., Hager, G., & Dassopoulos, T. (2012). Assessment of Crohn’s Disease Lesions in Wireless Capsule Endoscopy Images. IEEE Transactions on Biomedical Engineering, 2011;59(2);355-362.
[47] Segui, S., Drozdzal, M., Vilarino, F., Malagelada, C., Azpiroz, F., Radeva, P., & Vitria, J. (2012). Categorization and Segmentation of Intestinal Content Frames for Wireless Capsule Endoscopy. IEEE Transactions on Information Technology in Biomedicine, 2012;16(6); 1341-1352.
[48] Baopu Li, & Meng, M. Q. (2012). Tumor Recognition in Wireless Capsule Endoscopy Images Using Textural Features and SVM-Based Feature Selection. IEEE Transactions on Information Technology in Biomedicine, 2012;16(3),323-329.
[49] Riaz, F., Silva, F. B., Ribeiro, M. D., & Coimbra, M. T. (2012). Invariant Gabor Texture Descriptors for Classification of Gastroenterology Images. IEEE Transactions on Biomedical Engineering, 2012;59(10);2893-2904.
[50] Puerto-Souza, G. A., & Mariottini, G. (2013). A Fast and Accurate Feature-Matching Algorithm for Minimally-Invasive Endoscopic Images. IEEE Transactions on Medical Imaging, 2013;32(7); 1201-1214.
[51] Charisis, V. S., Katsimerou, C., Hadjileontiadis, L. J., Liatsos, C. N., & Sergiadis, G. D. (2013). Computer-aided capsule endoscopy images evaluation based on color rotation and texture features: An educational tool to physicians. Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems. 2013;10;1109.
[52] Eid, A., Charisis, V. S., Hadjileontiadis, L. J., & Sergiadis, G. D. (2013). A curvelet-based lacunarity approach for ulcer detection from Wireless Capsule Endoscopy images. Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems. 2013;10;1109.
[53] Sainju, S., Bui, F. M., & Wahid, K. (2013). Bleeding detection in wireless capsule endoscopy based on color features from histogram probability. 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). 2013;10;1109.
[54] Riaz, F., Silva, F. B., Ribeiro, M. D., & Coimbra, M. T. (2013). Impact of Visual Features on the Segmentation of Gastroenterology Images Using Normalized Cuts. IEEE Transactions on Biomedical Engineering, 2012;60(5);1191-1201.
[55] Mamonov, A. V., Figueiredo, I. N., Figueiredo, P. N., & Richard Tsai, Y. (2014). Automated Polyp Detection in Colon Capsule Endoscopy. IEEE Transactions on Medical Imaging, 2014;33(7);1488-1502.
[56] Fu, Y., Zhang, W., Mandal, M., & Meng, M. Q. (2014). Computer-Aided Bleeding Detection in WCE Video. IEEE Journal of Biomedical and Health Informatics, 2013;18(2); 636-642.
[57] J. Liu and X. Yuan, ―Obscure bleeding detection in endoscopy images using support vector machines,‖ Opt. Eng., 2009;10;289–299.
[58] B. Li and M. Meng, ―Computer-aided detection of bleeding regions for capsule endoscopy images,‖ IEEE Trans. Biomed. Eng., 2009;56;1032–1039.
[59] G. Pan, G. Yan, X. Qiu, and J. Cui, ―Bleeding detection in wireless capsule endoscopy based on probabilistic neural network,‖ J. Med. Syst., 2011;35;1477–1484.
[60] Brzeski, A. (2014). Color-based Detection of Bleeding in Endoscopic Images. International Journal of Innovative Research in Computer and Communication Engineering, 2014;9;5606 – 5610.
[61] Vu, H., Echigo, T., Imura, Y., Yanagawa, Y., & Yagi, Y. (2014). Segmenting Reddish Lesions in Capsule Endoscopy Images Using a Gastrointestinal Color Space. 2014 22nd International Conference on Pattern Recognition. 2014;10;1109.
[62] Shanmuga sundaram, P., & Santhiyakumari, N. (2014). Interactive Segmentation of Capsule Endoscopy Images Using Grow Cut Method. 2014 International Conference on Computational Intelligence and Communication Networks. 2014;10;1109.
[63] Shahri, R., Arianti, D., Baharun, S., Islam, A. M., & Komaki, S. (2014). Pre-processing technique based on discrete cosine transform (DCT) and anisotropic contrast diffusion for wireless capsule endoscopy images. 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES). 2014;10;1109.
[64] B. Li, Max Q.-H. Meng,, ―contrast diffusion‖, J. Vis. Commun. Image R. 2012;23;222–228.
[65] Hiroyasu, T., Hayashinuma, K., Ichikawa, H., Yagi, N., & Yamamoto, U. (2014). Endoscope image analysis method for evaluating the extent of early gastric cancer. 2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP). 2014;10;1109.
[66] Segui, S., Drozdzal, M., Zaytseva, E., Malagelada, C., Azpiroz, F., Radeva, P., & Vitria, J. (2014). Segui, S., Drozdzal, M., Zaytseva, E., Malagelada, C., Azpiroz, F., Radeva, P., & Vitria, J. (2014). Detection of Wrinkle Frames in Endoluminal Videos Using Betweenness Centrality Measures for Images. IEEE Journal of Biomedical and Health Informatics, 2014;18(6);1831-1838.
[67] Lin, B., Sun, Y., Sanchez, J. E., & Qian, X. (2015). Efficient Vessel Feature Detection for Endoscopic Image Analysis. IEEE Transactions on Biomedical Engineering, 2015;62(4);1141-1150.
[68] B. Lin, Y. Sun, J. Sanchez, and X. Qian, ―Vesselness based feature extraction for endoscopic image analysis,‖ in Proc. Int. Symp. Biomed. Imag., 2014;1295–1298.
[69] S. Giannarou, M. Visentini Scarzanella, and G.-Z. Yang, ―Probabilistic tracking of affine-invariant anisotropic regions,‖ IEEE Trans. Pattern Anal. Mach. Intell., 2013;35;130–143.
[70] K. Mikolajczyk and C. Schmid, ―Scale & affine invariant interest point detectors,‖ Int. J. Comput. Vis., 2004;60;63–86.
[71] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. J. V. Gool, ―A comparison of affine region detectors,‖ Int. J. of Comput. Vis., 2005; 65;43–72.
[72] D. Baboiu and G. Hamarneh, ―Vascular bifurcation detection in scalespace,‖ in IEEE Workshop Math. Meth. Biomed. Image Analysis, 2012;41–46.
[73] E. Rosten, R. Porter, and T. Drummond, ―Faster and better: A machine learning approach to corner detection,‖ IEEE Trans. Pattern Anal. Mach. Intell., 2010;32;105–119.
[74] M. Sofka and C. V. Stewart, ―Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures,‖ IEEE Trans. Med. Imag., 2006;25;1531–1546.
[75] Wang, D., Xie, X., Li, G., Yin, Z., & Wang, Z. (2015). A Lumen Detection-Based Intestinal Direction Vector Acquisition Method for Wireless Endoscopy Systems. IEEE Transactions on Biomedical Engineering, 2015;62(3),807-819.
[76] G. Gallo and A. Torrisi, ―Lumen detection in endoscopic images: A boosting classification approach,‖ Int. J. Adv. Intell. Syst.,2012;5;127–134.
[77] X. Zabulis, A. A. Argyros, and D. P. Tsakiris, ―Lumen detection for capsule endoscopy,‖ in Proc. IEEE Int. Conf. Intell. Robots Syst., 2008;3921–3926.
[78] Ghosh, T., Fattah, S. A., Bashar, S. K., Shahnaz, C., Wahid, K. A., Zhu, W., & Ahmad, M. O. (2015). An automatic bleeding detection technique in wireless capsule endoscopy from region of interest. 2015 IEEE International Conference on Digital Signal Processing (DSP). 2015;10;1109.
[79] T. Ghosh, K. Wahid, and S. A. Fattah, ―Automatic Bleeding Detection in Wireless Capsule Endoscopy Based on RGB Pixel Intensity Ratio‖, in Proc. iCEEiCT, 2014;1-4.
[80] T. Ghosh, S. K. Bashar, M. S. Alam, K. Wahid, and S. A. Fattah, ―A Statistical Feature Based Novel Method to Detect Bleeding in Wireless Capsule Endoscopy Images‖, in Proc. ICIEV,2014;1-4.
[81] L. Baopu and M. Q. H. Meng, ―Computer-Aided Detection of Bleeding Regions for Capsule Endoscopy Images,‖ IEEE Trans. Biomedical Engineering, 2009;56;1032-39.
[82] Bae, S., & Yoon, K. (2015). Polyp Detection via Imbalanced Learning and Discriminative Feature Learning. IEEE Transactions on Medical Imaging, 2015;34(11);2379-2393. [83] Yuan, Y., Wang, J., Li, B., & Meng, M. Q. (2015). Saliency Based Ulcer Detection for Wireless Capsule Endoscopy Diagnosis. IEEE Transactions on Medical Imaging, 2015;34(10); 2046-2057.
[84] B. Li and M. Q.-H. Meng, ―Texture analysis for ulcer detection in capsule endoscopy images,‖ Image Vis. Comput., 2009;27;1336–1342.
[85] V. S. Charisis, C. Katsimerou, L. J. Hadjileontiadis, C. N. Liatsos, and G. D. Sergiadis, ―Computer-aided capsule endoscopy images evaluation based on color rotation and texture features: An educational tool to physicians,‖ in Proc. IEEE 26th Int. Symp. Comput.-Based Med. Syst., 2013;203–208.
[86] L. Yu, P. C. Yuen, and J. Lai, ―Ulcer detection in wireless capsule endoscopy images,‖ in Proc. 21st Int. Conf. IEEE Pattern Recognit., 2012;45–48.
[87] Yuan, Y., Li, B., & Meng, M. Q. (2016). Bleeding Frame and Region Detection in the Wireless Capsule Endoscopy Video. IEEE Journal of Biomedical and Health Informatics, 2015;20(2); 624-630.
[88] L. Cui, C. Hu, Y. Zou, and M.-H. Meng, "Bleeding detection in wireless capsule endoscopy images by support vector classifier," in Information and Automation (ICIA), 2010 IEEE International Conference on, 2010;1746-1751.
[89] G. Lv, G. Yan, and Z. Wang, "Bleeding detection in wireless capsule endoscopy images based on color invariants and spatial pyramids using support vector machines," in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, 2011;6643-6646.
[90] J. Yang, K. Yu, Y. Gong, and T. Huang, "Linear spatial pyramid matching using sparse coding for image classification," in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 2009;1794-1801.
[91] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, "Locality-constrained linear coding for image classification," in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, 2010;3360-3367.
[92] Reeha K. R., Shailaja K., & Gopi, V. P. (2016). Undecimated Complex Wavelet Transform based bleeding detection for endoscopic images. 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP). 2016;10;1109.
[93] Wang, S., Cong, Y., Fan, H., Liu, L., Li, X., Yang, Y., Yu, H. (2016). Computer-Aided Endoscopic Diagnosis Without Human-Specific Labeling. IEEE Transactions on Biomedical Engineering, 2016;63(11);2347-2358.
[94] W.-J. Li and D.-Y. Yeung, ―Mild: Multiple-instance learning via disambiguation,‖ IEEE Trans. Knowl. Data Eng., 2010;22;76–89.
[95] Huang, C., Chen, Y., Chen, W., Cheng, H., & Sheu, B. (2016). Gastroesophageal Reflux Disease Diagnosis Using Hierarchical Heterogeneous Descriptor Fusion Support Vector Machine. IEEE Transactions on Biomedical Engineering, 2016;63(3);588-599.
[96] X. Wu, H. Chen, T. Gan, J. Chen, C. Ngo and Q. Peng, "Automatic Hookworm Detection in Wireless Capsule Endoscopy Images," in IEEE Transactions on Medical Imaging, 2016;35;1741-1752.
[97] Shrestha, R., Mohammed, S. K., Hasan, M. M., Zhang, X., & Wahid, K. A. (2016). Automated Adaptive Brightness in Wireless Capsule Endoscopy Using Image Segmentation and Sigmoid Function. IEEE Transactions on Biomedical Circuits and Systems, 2016;10(4); 884-892.
[98] ZHOU, S., CHEN, S., Karim, A., BAI, J., & FAN, C. (2017). Bleeding Detection in Wireless Capsule Endoscope Based on Color Feature Vector. DEStech Transactions on Computer Science and Engineering, (aice-ncs).2016;10;12783.
[99] Zhou S., Song X., Siddique M.A., et al. Bleeding detection in wireless capsule endoscopy images based on binary feature vector, Intelligent Control and Information Processing (ICICIP), 2014 Fifth International Conference on. IEEE, 2014;29-33.
[100] Mathew M., Gopi V.P. Transform based bleeding detection technique for endoscopic images, Electronics and Communication Systems (ICECS), 2015 2nd International Conference on. IEEE, 2015;1730-1734.
[101] Kundu, A. K., Bhattacharjee, A., Fattah, S. A., & Shahnaz, C. (2016). Automatic ulcer detection scheme using gray scale histogram from wireless capsule endoscopy. 2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). 2016;10;1109.
[102] S. T. Jadhav and S. H. Dabhole, ―An optimal imf selection based on fast beemd with dlac analysis for detection of polyp and ulcer in wce images,‖ in Proc. International Conference on Electronics and Communication Systems, 2015;264–270.
[103] Karargyris and N. Bourbakis, ―Identification of ulcers in wireless capsule endoscopy videos,‖ in Proc. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009,;554–557.
[104] Shahril, R., Baharun, S., & Islam, A. M. (2016). Pre-processing Technique for Wireless Capsule Endoscopy Image Enhancement. International Journal of Electrical and Computer Engineering (IJECE), 2016;6(4); 1617.
[105] Yuan, Y., Li, B., & Meng, M. Q. (2016). Improved Bag of Feature for Automatic Polyp Detection in Wireless Capsule Endoscopy Images. IEEE Transactions on Automation Science and Engineering, 2015;13(2),529-535.
[106] Barbalata, C., & Mattos, L. S. (2016). Laryngeal Tumor Detection and Classification in Endoscopic Video. IEEE Journal of Biomedical and Health Informatics, 2014;20(1); 322-332.
[107] M. Hirota, T. Tamaki, K. Kaneda, S. Yosida, and S. Tanaka, ―Feature extraction from images of endoscopic large intestine,‖ Inst. Electron. Eng. Korea, Seoul, Korea, 2008; 100–105.
[108] F. Rossant, M. Badellino, A. Chavillon, I. Bloch, and M. Paques, ―A morphological approach for vessel segmentation in eye fundus images, with quantitative evaluation,‖ J. Med. Imag. Health Informat., 2011;42–49.
[109] Bernal, J., Tajkbaksh, N., Sanchez, F. J., Matuszewski, B. J., Chen, H., Yu, L., Histace, A. (2017). Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge. IEEE Transactions on Medical Imaging, 36(6), 1231-1249. doi:10.1109/tmi.2017.2664042
[110] Riaz, F., Hassan, A., Nisar, R., Dinis-Ribeiro, M., & Coimbra, M. T. (2017). Content-Adaptive Region-Based Color Texture Descriptors for Medical Images. IEEE Journal of Biomedical and Health Informatics, 21(1), 162-171. doi:10.1109/jbhi.2015.2492464
[111] F. Riaz, A. Hassan, S. Rehman, and U. Qamar, ―Texture classification using rotation- and scale-invariant gabor texture features,‖ Signal Processing Letters, IEEE, vol. 20, no. 6, pp. 607–610, 2013.
[112] F. Riaz, ―Assisted analysis of gastroenterology images using computer vision methodologies,‖ Phd Thesis, Faculdade de Ciencias da Universidade do Porto, 2012
[113] F. Riaz, M. Dinis-Ribeiro, P. Pimentel-Nunes, and M. T. Coimbra, ―A dft based rotation and scale invariant gabor texture descriptor and its application to gastroenterology.,‖ in ICIP, 2013;1443–1446.
[114] T. Ojala, M. Pietikainen, and T. M ¨ aenp ¨ a¨a, ―Multiresolution gray-scale ¨ and rotation invariant texture classification with local binary patterns,‖ Pattern Analysis and Machine Intelligence, IEEE Transactions on,2002;24;971–987.
[115] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, ―Describing textures in the wild,‖ in Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, 2014;3606–3613.
[116] Yuan, Y., Li, B., & Meng, M. Q. (2017). WCE Abnormality Detection Based on Saliency and Adaptive Locality-Constrained Linear Coding. IEEE Transactions on Automation Science and Engineering, 2016;14(1);149-159.
[117] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, ―Visual categorization with bags of keypoints,‖ in Proc. Workshop Statist. Learn. Comput. Vis. (ECCV), Prague, Czech Republic, 2004;1–22.
[118] J. Yang, K. Yu, Y. Gong, and T. Huang, ―Linear spatial pyramid matching using sparse coding for image classification,‖ in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., 2009; 1794–1801.
[119] Souaidi, M., Abdelouahad, A. A., & Ansari, M. E. (2017). A fully automated ulcer detection system for wireless capsule endoscopy images. 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). 2017;10;1109.
[120] Perperidis, A., Akram, A., Altmann, Y., McCool, P., Westerfeld, J., Wilson, D., McLaughlin, S. (2017). Automated Detection of Uninformative Frames in Pulmonary Optical Endomicroscopy. IEEE Transactions on Biomedical Engineering, 2016;64(1); 87-98.
[121] Deeba, F., Mohammed, S. K., Bui, F. M., & Wahid, K. A. (2017). Efficacy Evaluation of SAVE for the Diagnosis of Superficial Neoplastic Lesion. IEEE Journal of Translational Engineering in Health and Medicine, 5, 2017;10;1109;1-12.
[122] Figueiredo, I. N., Leal, C., Pinto, L., Figueiredo, P. N., & Tsai, R. (2017). Dissimilarity Measure of Consecutive Frames in Wireless Capsule Endoscopy Videos: A Way of Searching for Abnormalities. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). 2017;10;1109.
[123] Charisis, V. S., & Hadjileontiadis, L. J. (2016). Use of adaptive hybrid filtering process in Crohn's disease lesion detection from real capsule endoscopy videos. Healthcare Technology Letters, 2015;3(1);27-33.
[124] Ghosh, T., Fattah, S. A., & Wahid, K. A. (2018). CHOBS: Color Histogram of Block Statistics for Automatic Bleeding Detection in Wireless Capsule Endoscopy Video. IEEE Journal of Translational Engineering in Health and Medicine, 6, 2018;10;1109;1-12.
[125] Rajaeefar, Atefe & Emami, Ali & Soroushmehr, S.M.Reza & Karimi, Nader & Samavi, Shadrokh & Najarian, Kayvan. (2018). Lossless Image Compression Algorithm for Wireless Capsule Endoscopy by Content-Based Classification of Image Blocks 2018. International Journal of Engineering Trends and Technology (IJETT) – Volume 67 Issue 8- August 2019 ISSN: 2231-5381 http://www.ijettjournal.org Page 47
[126] Mohammed, A., Farup, I., Pedersen, M., Hovde, Ø., & Yildirim, S. (2018). Stochastic Capsule Endoscopy Image Enhancement. 2018;10;20944..
[127] Fattal, R.; Agrawala, M.; Rusinkiewicz, S. Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Graph. 2007;26, 51
[128] Farbman, Z.; Fattal, R.; Lischinski, D.; Szeliski, R. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 2008;27, 67.
[129] Figueiredo, P., Figueiredo, I., Pinto, L., Kumar, S., Tsai, Y., & Mamonov, A. (2019). Polyp detection with computer-aided diagnosis in white light colonoscopy: comparison of three different methods. Endoscopy International Open, 02019;7(02);E209-E215.
[130] Bernal J, Sanchez FJ, Fernandez-Esparrach G et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comp Med Imaging Graphics 2015; 43: 99 – 111
[131] Hajabdollahi, Mohsen & Esfandiarpoor, Reza & Khadivi, Pejman & Soroushmehr, S.M.Reza & Karimi, Nader & Najarian, Kayvan & Samavi, Shadrokh. (2018). Segmentation of Bleeding Regions in Wireless Capsule Endoscopy for Detection of Informative Frames 2018.
[132] A. Koulaouzidis, "KID. Koulaouzidis-Iakovidis database for capsule endoscopy", 2016.
[133] F.Deeba, "Bleeding images and corresponding ground truth of CE images", 2016.
[134] Figueiredo, I. N., Leal, C., Pinto, L., Figueiredo, P. N., & Tsai, R. (2018). Hybrid multiscale affine and elastic image registration approach towards wireless capsule endoscope localization. Biomedical Signal Processing and Control, 2017;39;486-502.
[135] Long, M., Lan, Z., Xie, X., Li, G., & Wang, Z. (2018). Image Enhancement Method Based on Adaptive Fraction Gamma Transformation and Color Restoration for Wireless Capsule Endoscopy. 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). 2018;10;1109;
[136] Souaidi, M., Abdelouahed, A. A., & El Ansari, M. (2018). Multi-scale completed local binary patterns for ulcer detection in wireless capsule endoscopy images. Multimedia Tools and Applications. 2018;10;1007.
[137] Li B, Meng MQH, Lau JY (2011) Computer-aided small bowel tumor detection for capsule endoscopy. Artif Intell Med 2011;52(1);11–16.
[138] Bchir, O., Ben Ismail, M. M., & AlZahrani, N. (2018). Multiple bleeding detection in wireless capsule endoscopy. Signal, Image and Video Processing, 2018;13(1); 121-126.
[139] Vani, V., & Prashanth, K. V. (2018). Image Enhancement of Wireless Capsule Endoscopy Frames Using Image Fusion Technique. IETE Journal of Research, 2018;10;1-13.
[140] V. P. Gopi, P. Palanisamy, and S. I. Niwas, ―Capsule endoscopic colour image denoising using complex wavelet transform,‖ In Wireless Networks and Computational Intelligence. Berlin: Springer, 2012;220–9.
[141] M. Moradi, A. Falahati, A. Shahbahrami, and R. Hassanpour, ―Improving visual quality in wireless capsule endoscopy images with contrast-limited adaptive histogram equalization,‖ In 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA), IEEE, 2015;1–5. [142] T. H. Khan, S. K. Mohammed, M. S. Imtiaz, and K. A. Wahid, ―Color reproduction and processing algorithm based on real-time mapping for endoscopic images,‖ Springer Plus, 2016;5;1-17.
[143] T. Welsh, M. Ashikhmin, and K. Mueller, ―Transferring color to greyscale images,‖ ACM Trans Graph., 2002; 21;277–80.
[144] V. Korostyshevskiy, ―Grayscale to RGB converter,‖ MATLAB Central File Exchange, 2006.
[145] H. Okuhata, H. Nakamura, S. Hara, H. Tsutsui, and T. Onoye, ―Application of the real-time Retinex image enhancement for endoscopic images,‖ In 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013;3407–10.
[146] F. Vogt, S. Krüger, H. Niemann, and C. Schick, ―A system for real-time endoscopic image enhancement,‖ In International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Berlin, Heidelberg, 2003;356–63.
[147] A. Mostafa, K. Wahid, and S. B. Ko, ―An efficient YUV based image compression algorithm for wireless capsule endoscopy,‖ In 24th Canadian Conference on Electrical and Computer Engineering (CCECE), IEEE, 2011; 943–46.
[148] N. Sudha, and N. M. Santhiya Kumari, ―Summarizing wireless capsule endoscopy video frame based on inter-frame structural similarity index,‖ Adv. Nat. Appl. Sci., 2016;10;199–208.
[149] Hajabdollahi, M., Esfandiarpoor, R., Soroushmehr, S.M., Karimi, N., Samavi, S.A., & Najarian, K. (2018). Segmentation of Bleeding Regions in Wireless Capsule Endoscopy Images an Approach for inside Capsule Video Summarization. CoRR, 2018;1802.07788.
[150] E. Tuba, M. Tuba and R. Jovanovic, ―An algorithm for automated segmentation for bleeding detection in endoscopic images‖, International Joint Conference on Neural Networks (IJCNN), 2017;4579-4586.
[151] F. Deeba, F.M. Bui and K.A. Wahid, ―Automated growcut for segmentation of endoscopic images‖, International Joint Conference on Neural Networks (IJCNN), 2016;4650-4657.
[152] Xing, X., Jia, X., & Meng, M. -. (2018). Bleeding Detection in Wireless Capsule Endoscopy Image Video Using Superpixel-Color Histogram and a Subspace KNN Classifier. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).2018;10;1109.
[153] Coelho, P., Pereira, A., Leite, A., Salgado, M., & Cunha, A. (2018). A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies. Lecture Notes in Computer Science, 2018;10;1007;553-561.
[154] Sainju, S., Bui, F.M., Wahid, K.A.: Automated bleeding detection in capsule endoscopy videos using statistical features and region growing. J. Med. Syst. 2014;38(4);25. http://link.springer.com/10.1007/s10916-014-0025-1
[155] Figueiredo, I.N., Kumar, S., Leal, C., Figueiredo, P.N.: Computer-assisted bleeding detection in wireless capsule endoscopy images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2013;1(4);198–210. http://www.tandfonline.com/
[156] Usman, M.A., Satrya, G., Usman, M.R., Shin, S.Y.: Detection of small colon bleeding in wireless capsule endoscopy videos. Comput. Med. Imaging Graph. 2016;54, 16–26 . https://doi.org/10.1016/j.compmedimag.2016.09.005
[157] Xiong, Y., Zhu, Y., Pang, Z., Ma, Y., Chen, D., Wang, X.: Bleeding detection in wireless capsule endoscopy based on MST clustering and SVM. In: IEEE Workshop on Signal Processing Systems (SiPS), 2015;35;1–4. http:// ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7345001
[158] Vasilakakis, M. D., Iakovidis, D. K., Spyrou, E., & Koulaouzidis, A. (2018). DINOSARC: Color Features Based on Selective Aggregation of Chromatic Image Components for Wireless Capsule Endoscopy. Computational and Mathematical Methods in Medicine, 2018; 1-11.
[159] D. K. Iakovidis and A. Koulaouzidis, ―Automatic lesion detection in wireless capsule endoscopy—a simple solution for a complex problem,‖ in Proceedings of IEEE International Conference on Image Processing (ICIP), Paris, France, 20142236–2240.
[160] G. Wyszecki and W. S. Stiles, Color Science, Wiley, Vol. 8, Wiley, New York, NY, USA, 1982
[161] Ghosh, T., Li, L., & Chakareski, J. (2018). Effective Deep Learning for Semantic Segmentation Based Bleeding Zone Detection in Capsule Endoscopy Images. 2018 25th IEEE International Conference on Image Processing (ICIP) 2018;10;1109.
[162] D. K. Iakovidis and A. Koulaouzidis, ―Software for enhanced video capsule endoscopy: challenges for essential progress,‖ Nature Reviews Gastroenterology & Hepatology, 2015;12;172–186.
[163] X. Jia and M. Q.-H. Meng, ―A study on automated segmentation of blood regions in wireless capsule endoscopy images using fully convolutional networks,‖ in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE, 2017;179–182.
[164] Varma Malathkara, N., & Soni, S. K. (2018). Low-Complexity and Lossless Image Compression Algorithm for Capsule Endoscopy. SSRN Electronic Journal. 2018;10;2139.
[165] Fan, S., Xu, L., Fan, Y., Wei, K., & Li, L. (2018). Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images. Physics in Medicine & Biology, 2018;63(16);165001.
[166] Aoki, T., Yamada, A., Aoyama, K., Saito, H., Tsuboi, A., Nakada, A., … Tada, T. (2019). Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointestinal Endoscopy, 2018;89(2);357-363.
[167] Kundu, A. K., Fattah, S. A., & Rizve, M. N. (2018). An Automatic Bleeding Frame and Region Detection Scheme for Wireless Capsule Endoscopy Videos Based on Interplane Intensity Variation Profile in Normalized RGB Color Space. Journal of Healthcare Engineering, 2018;1-12.
[168] T. Ghosh, S. A. Fattah, C. Shahnaz, and K. A. Wahid, ―An automatic bleeding detection scheme in wireless capsule endoscopy based on histogram of an RGB-indexed image,‖ in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014;4683–4686.
[169] Long, M., Li, Z., Xie, X., Li, G., & Wang, Z. (2018). Adaptive Image Enhancement Based on Guide Image and Fraction-Power Transformation for Wireless Capsule Endoscopy. IEEE Transactions on Biomedical Circuits and Systems, 2018;12(5); 993-1003.
[170] S. Huang, F. Cheng, Y. Chiu. ―Efficient contrast enhancement using adaptive gamma correction with weighting distribution‖. IEEE Transactions on Image Processing, 2013;22(3);1032-1041.
[171] D. Sheet, H. Garud, A. Suveer, et al. ―Brightness preserving dynamic fuzzy histogram equalization‖. IEEE Transactions on Consumer Electronics, 2010; 56(4); 2475-2480.
[172] G. Deng. ―A generalized unsharp masking algorithm‖. IEEE transactions on Image Processing, 2011; 20(5); 1249-1261.
[173] X. Fu, D. Zeng, Y. Huang, X. Zhang, X. Ding. ―A weighted variational model for simultaneous reflectance and illumination estimation‖, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016; 2782-2790.
[174] Tuba, E., Tomic, S., Beko, M., Zivkovic, D., & Tuba, M. (2018). Bleeding Detection in Wireless Capsule Endoscopy Images Using Texture and Color Features. 2018 26th Telecommunications Forum (TELFOR).2018;10;1109.
[175] Sivakumar, P., & Kumar, B. M. (2018). A novel method to detect bleeding frame and region in wireless capsule endoscopy video. Cluster Computing. 2018;10;1007.
[176] JI, X., XU, T., & LI, W. (2018). A Recognition Algorithm for Wireless Capsule Gastroscopy Images. DEStech Transactions on Computer Science and Engineering, (iece). 2018;26638.
[177] D.J. Barbosa, J. Ramos, C.S. Lima, Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform, in: Proc. of 30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2008;1102-1105.
[178] J. Deng, L. Zhao, Image classification model with multiple feature selection and support vector machine, J. Jilin Univ. (Science Edition). 4 2016;862-866.
[179] Leenhardt, R., Vasseur, P., Li, C., Saurin, J. C., Rahmi, G., Cholet, F., Romain, O. (2019). A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy. Gastrointestinal Endoscopy, 2019;89(1);189-194.
[180] Shanmuga Sundaram, P., & Santhiyakumari, N. (2019). An Enhancement of Computer Aided Approach for Colon Cancer Detection in WCE Images Using ROI Based Color Histogram and SVM2. Journal of Medical Systems, 2019;43(2).
[181] Vijayakumar, V., Priyan, M. K., Ushadevi, G., Varatharajan, R., Manogaran, G., and Tarare, P. V., E-health cloud security using timing enabled proxy re-encryption. Mobile Networks and Applications: 2018;1–12.
[182] Mathan, K., Kumar, P. M., Panchatcharam, P., Manogaran, G., and Varadharajan, R., A novel Gini index decision tree data mining method with neural network classifiers for prediction of heart disease. Des. Autom. Embed. Syst.:2018;1–18.
[183] Wang, Q., Pan, N., Xiong, W., Lu, H., Li, N., & Zou, X. (2019). Reduction of bubble-like frames using a RSS filter in wireless capsule endoscopy video. Optics & Laser Technology, 2018;110;152-157.
[184] Sharma, R., Bhadu, R., Soni, S. K., & Varma, N. (2018). Reduction of Redundant Frames in Active Wireless Capsule Endoscopy. Lecture Notes in Electrical Engineering, 2018;1-7.
[185] C. Sampath Kannangara et al., ―Low-complexity skip prediction for H.264 through lagrangian cost estimation,‖ IEEE Trans. Circuits Syst. Video Technol., 2006;16;202–207.
[186] H. G. Lee, M. K. Choi, B. S. Shin, and S. C. Lee, ―Reducing redundancy in wireless capsule endoscopy videos,‖ Comput. Biol. Med., 2013;43; 670–682.
[187] C. Yi, L. Yihua, and R. Haozheng, ―Trimming the wireless capsule endoscopic video by removing redundant frames,‖ 2012 Int. Conf. Wirel. Commun. Netw. Mob. Comput. WiCOM 2012, 2012.
[188] Varma Malathkar, N., & Kumar Soni, S. (2019). Low complexity image compression algorithm based on hybrid DPCM for wireless capsule endoscopy. Biomedical Signal Processing and Control, 2019;48;197-204.
[189] X. Xiang, L. GuoLin, C. XinKai, L. Lu, Z. Chun, W. ZhiHua, A low power digital IC design inside the wireless endoscopy capsule, IEEE J. SolidState Circuits 41 2006; 2390–2400.http://dx.doi.org/10.1109/JSSC.2006.882884.
[190] X. Chen, X. Zhang, L. Zhang, N. Qi, H. Jiang, Z. Wang, A wireless capsule endoscope system with a low-power controlling and processing ASIC, IEEE Trans. Biomed. Circuits Syst. 3 2009; 11–22. http://dx.doi.org/10.1109/ TBCAS.2008.2006493.
[191] T.H. Khan, K.A. Wahid, Lossless and low-power image compressor for wireless capsule endoscopy, Vlsi Des. (2011), http://dx.doi.org/10.1155/2011/ 343787.
[192] T.H. Khan, K.A. Wahid, Design of a lossless image compression system for video capsule endoscopy and its performance in in-vivo trials, Sensors 14 2014; 20779–20799, http://dx.doi.org/10.3390/s141120779.
[193] S.K. Mohammed, K. Mafijur Rahman, K.A. Wahid, Lossless compression in bayer color filter array for capsule endoscopy, IEEE Access 5 2017;13823–13834. http://dx.doi.org/10.1109/ACCESS.2017.2726997.
[194] Sharif, M., Attique Khan, M., Rashid, M., Yasmin, M., Afza, F., & Tanik, U. J. (2019). Deep CNN and geometric features-based gastrointestinal tract diseases detection and classification from wireless capsule endoscopy images. Journal of Experimental & Theoretical Artificial Intelligence, 2019; 1-23.

Keywords
Gastrointestinal tract, esophagus, Computer Aided Diagnosis, Endoscopy.